
Steve Seguis

Learn to:
• Master Windows PowerShell 2 without

complicated jargon

• Automate Windows Server®
administration tasks

• Use the new features of Windows
PowerShell 2

• Debug scripts, remotely invoke
commands, and more

Windows
PowerShell

™

 2

Making Everything Easier!

Visit the companion Web site at www.dummies.com/go/

powershell2fd to find code files for the code listings used in

the book and a bonus chapter about exception handling

 Open the book and find:

• Tips for personalizing PowerShell

• All about cmdlets

• How to use Windows Management
Instrumentation (WMI)

• Things to watch for in value
conversions

• How to internationalize a script

• Debugging tools and how to use
them

• Network configuration tips

• Ten common mistakes to avoid

• How to take advantage of this new
feature in Windows 7

Steve Seguis is a Microsoft Windows systems engineer with more than

12 years of experience managing small- to large-scale Windows

environments. He was a Microsoft MVP for Windows Server - Admin

Frameworks from 2004–2007, and is a contributing technical editor for

Windows IT Pro.

Programming Languages/General

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-37198-5

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Get the power to use
Windows PowerShell 2 on
any Windows system — right here!
You’ve heard about Windows PowerShell 2, the Windows
scripting environment that’s changing how we think
about Windows scripting. This fun and friendly guide gives
you a solid understanding of what it is and how to use
it, with plenty of real-world examples so you can put the
information to good use right away. Your boss will think
you’re a genius!

• View from the top — get an overview of Windows PowerShell 2
and examine the syntax, structure, and core functionality

• Look deeper — manipulate strings, work with data structures
like arrays and hashtables, and use Windows Management
Instrumentation

• The need for speed — see how Windows PowerShell speeds
things up by letting you run commands on a remote computer or
run multiple commands at once

• In the real world — learn to apply scripts to specific needs

• It does more — use Windows PowerShell 2 to manage network
configurations, gather hardware info, connect to printers, and
more

W
indow

s Pow
erShell

™ 2

Seguis

spine=.816”

DropBooksDropBooks

DropBooksDropBooks

by Steve Seguis

Windows
PowerShell™ 2

FOR

DUMmIES
‰

DropBooksDropBooks

Windows PowerShell™ 2 For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
Windows PowerShell is a trademark of Microsoft Corporation in the United States and/or other countries.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009931743

ISBN: 978-0-470-37198-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

DropBooksDropBooks

www.wiley.com
www.wiley.com/go/permissions
www.wiley.com/go/permissions
www.wiley.com/techsupport

About the Author
Steve Seguis lives with his amazing wife, Annalene, in New York City, New

York. He is a twelve-year Windows Systems Engineer veteran and specializes

in systems automation. He was a Microsoft Most Valuable Professional (MVP)

for Windows Server — Admin Framework from 2004–2007. He is also a con-

tributing writer and technical editor for Windows IT Pro and, most recently,

has published a book on Windows Server 2008 Administration.

Dedication
To my parents, Romeo and Lourdes, who gave me the opportunities that

have allowed me to pursue my dreams and become who I am today.

DropBooksDropBooks

DropBooksDropBooks

Author’s Acknowledgments
I’ve always been a fan of the For Dummies books, which has often resulted

in one or two chuckles from my colleagues due to the incorrect perception

that somehow reading a For Dummies book implies a lack of intelligence.

The reality is that I’m a fan of making complex things simple and I like books

that focus on getting me the information I need in an easy, digestible format.

The For Dummies books have been doing this for years, and ever since I read

my fi rst For Dummies book (specifi cally C For Dummies by Dan Gookin, over

a dozen years ago), I was captured by the ease at which I was able to gain

knowledge while having the occasional laugh. I never in my wildest imagina-

tion thought I’d ever have the opportunity to write one myself . . . that is until

my agent, David Fugate, got me in touch with the good people over at Wiley

Publishing and got this journey started. Thanks David!

I’d like to thank Greg Croy, Executive Editor, for getting my proposal for this

book approved. He actually retired before I was done writing the book, but

kudos to him for getting the ball rolling. Thanks goes out to Blair Pottenger,

Project Editor, for keeping me well-informed, answering all my questions,

and putting in a lot of work to get the book fi nished. Of course, I’d also like to

thank Katie Mohr, Acquisitions Editor, who took over Greg’s role in this proj-

ect after he retired. Katie went on maternity leave just before we got done

with the book, so congratulations Katie on the new baby. The project had hit

a bit of a plateau half way through, but when she took over we were able to

regroup and get everything back on track.

I have to thank my very patient and supportive wife, Annalene, who puts up

with me disappearing into the cubby hole I call my home offi ce for late night

writing sessions and generally dealing with all my quirks. We somehow work

together to stay sane despite our lives going at 100 miles an hour.

I also have to thank my parents and my family for understanding how busy

I get, generally staying out of my hair (what hair I have left), and letting me

pursue my interests even though they continue to say that I need to slow

down a bit and get some more sleep.

Finally, I’d like to thank the guys over at Microsoft for creating this awesome

scripting language called Windows PowerShell. We’ve come a long way since

batch fi les and as a long-time Windows administrator, I bow to your great-

ness. Windows PowerShell is truly empowering and more Windows folks in

every company need to embrace it.

DropBooksDropBooks

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form located

at http://dummies.custhelp.com. For other comments, please contact our Customer Care

Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisition, Editorial, and Media

Development

Project Editor: Blair J. Pottenger

Executive Editor: Greg Croy

Acquisitions Editor: Katie Mohr

Copy Editors: Virginia Sanders, Kathy Simpson

Technical Editor: David Dalan

Editorial Manager: Kevin Kirschner

Media Development Project Manager:

Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Associate Producer:

Josh Frank

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant (www.the5thwave.
com)

Composition Services

Project Coordinator: Lynsey Stanford

Layout and Graphics: Melanee Habig,

Melissa K. Jester

Proofreaders: Melissa Cossell,

Christopher M. Jones

Indexer: Potomac Indexing, LLC

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

DropBooksDropBooks

Contents at a Glance
Introduction .. 1

Part I: Get ting a Bird’s-Eye View of PowerShell 2 9
Chapter 1: The Windows PowerShell Rap Sheet .. 11

Chapter 2: Customizing and Shortcutting the Environment 21

Chapter 3: A Pinch of Shell, a Pound of Power .. 37

Part II: PowerShell’s Basic Structure and Syntax 47
Chapter 4: Shelling Out Commands and Scripts .. 49

Chapter 5: When Dollars Turn into Variables .. 61

Chapter 6: A Bit of Logic to Save the Day ... 77

Chapter 7: Working on a Pipeline .. 89

Part III: Complex Data Description and Sharing 97
Chapter 8: Working with Windows Management Instrumentation 99

Chapter 9: Bringing Strings into the Limelight ... 117

Chapter 10: I’ll Take Numbers for $100, Please .. 137

Chapter 11: Grouping Data Using Arrays and Hash Tables 147

Chapter 12: Readin’ and Writin’ Files .. 159

Chapter 13: Going On a Date with PowerShell ... 175

Part IV: Controlling Where and How
You Operate PowerShell ... 185
Chapter 14: Using Functions to Divide and Conquer .. 187

Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background 209

Chapter 16: Making Your Script Speak Different Languages 223

Chapter 17: Smashing Those Bugs .. 231

Part V: Real-World Windows Administration
Using PowerShell ... 245
Chapter 18: Mission Control: All Systems Go ... 247

Chapter 19: Taming the Windows Registry .. 261

Chapter 20: Reaching Out to Active Directory ... 273

Chapter 21: PowerShell Lockdown .. 287

Chapter 22: Converting Your Old Scripts: Out with the Old, In with the New 301

DropBooksDropBooks

Part VI: Configuring and Reporting Via PowerShell 317
Chapter 23: Controlling Your Network Confi guration ... 319

Chapter 24: Managing Your Hardware .. 331

Chapter 25: Making Reporting Easy .. 345

Part VII: The Par t of Tens ... 357
Chapter 26: The Ten Most Important Cmdlets .. 359

Chapter 27: Ten Common PowerShell Mistakes .. 365

Bonus Chapter 1: Handling Exceptions ... 1

Index .. 375

DropBooksDropBooks

Table of Contents
Introduction ... 1

About This Book .. 1

Conventions Used in This Book ... 2

What You’re Not to Read .. 3

Foolish Assumptions ... 3

How This Book Is Organized .. 4

Part I: Getting a Bird’s Eye View of PowerShell 2............................... 4

Part II: PowerShell’s Basic Structure and Syntax 4

Part III: Complex Data Description and Sharing 5

Part IV: Controlling Where and How You Operate PowerShell 5

Part V: Real-World Windows Administration Using PowerShell 6

Part VI: Confi guring and Reporting Via PowerShell........................... 6

Part VII: The Part of Tens .. 6

Icons Used in This Book ... 7

What’s on the Web Site ... 7

Where to Go from Here ... 7

Part I: Get ting a Bird’s-Eye View of PowerShell 2 9

Chapter 1: The Windows PowerShell Rap Sheet.11
Addressing the Need for a Powerful, Windows-Focused

Scripting Language .. 12

Watching Monad morph into PowerShell ... 12

A little bit on Windows PowerShell 1.0 ... 13

Windows PowerShell 2, the Next Evolution ... 14

Installing Windows PowerShell 2 ... 15

Firing up the Windows PowerShell Command Shell 16

Going GUI: The Windows PowerShell Integrated Shell

Environment (ISE) .. 18

Chapter 2: Customizing and Shortcutting the Environment 21
Personalizing the Look and Feel of the Command Shell 22

Adding color to your world .. 22

Getting size-specifi c with your windows .. 22

A window by any other name 24

Changing Your PowerShell Profi le ... 24

Making the Windows PowerShell ISE Work for You 27

Customizing the ISE ... 28

Adding your own functions to the ISE menu 28

Creating Aliases ... 30

DropBooksDropBooks

Windows PowerShell 2 For Dummies x
Deleting Aliases .. 31

Accessing the Alias Drive ... 32

Creating Persistent Aliases ... 33

Getting to Know Tab Expansion .. 34

Chapter 3: A Pinch of Shell, a Pound of Power.37
Getting a Taste of Windows PowerShell ... 38

Creating Your First Script ... 39

Breaking Down Your First Script ... 41

Sneaking a Peek at Complex Scripts .. 43

Examining the Nuts and Bolts of the Complist Script 45

Part II: PowerShell’s Basic Structure and Syntax 47

Chapter 4: Shelling Out Commands and Scripts.49
Cmdlets: The Little Commands That Could! .. 49

Putting Cmdlets under a microscope .. 50

Checking out existing Cmdlets ... 51

Making Cmdlets understand you ... 53

One Shell to Rule Them All ... 55

Windows Shell scripts ... 55

Windows Scripting Host .. 59

Chapter 5: When Dollars Turn into Variables .61
Discovering Variables: They Vary Very Much ... 62

Getting to Know Data Types .. 62

Dealing with data types ... 64

Explicitly defi ning the data type .. 65

Casting values .. 67

Constant and Read-Only Variables .. 70

Understanding Automatic Variables ... 71

Working with Objects through Variables ... 74

Chapter 6: A Bit of Logic to Save the Day .77
A Logic Primer ... 77

Branching Using If/Else ... 80

Using the Switch Statement .. 83

Doing It Over and Over and Over Again with Loops 83

Looping with For .. 84

Using Foreach to loop through collections 85

Looping for a While ... 86

Running a loop at least once with Do While 86

Taking a look at Do Until ... 87

Avoiding loop pitfalls .. 88

DropBooksDropBooks

xi Table of Contents

Chapter 7: Working on a Pipeline .89
Using Pipelines to Streamline Your Commands .. 90

Stringing Commands Together .. 91

Getting the Right Output .. 94

Part III: Complex Data Description and Sharing 97

Chapter 8: Working with Windows Management
Instrumentation. .99

Getting Familiar with Windows Management Instrumentation 100

Examining the WMI architecture ... 100

Poking around in WMI namespaces .. 101

Securing WMI .. 103

Making Windows PowerShell Interact with WMI 103

Using SQL Syntax in WMI to Get WQL ... 106

Harnessing the Power of WMI .. 108

Querying service status .. 108

Looking for event log entries .. 109

Changing WMI Authentication Levels ... 109

Pretending to Be Someone Else Using Impersonation 111

Using the New WMI Cmdlets .. 112

Making things happen with Invoke-WMIMethod 113

Deleting objects using Remove-WmiObject 114

Setting WMI properties using Set-WmiInstance 114

Chapter 9: Bringing Strings into the Limelight 117
Taking Your First Look at Strings .. 117

Differentiating between empty and null strings 118

Creating literal strings ... 118

Simplifying using Here-Strings ... 119

Performing String Surgery .. 120

Combining strings .. 120

Combining strings with nonstrings ... 121

Splitting strings .. 122

Snipping off a piece of a string ... 123

Performing string substitutions ... 125

Working with String Positions ... 125

Changing the Case of Strings .. 127

Using Regular Expressions ... 127

Creating the simplest RegEx using literal characters 128

Performing more dynamic searches using character sets 130

Using modifi ers to defi ne optional or repeating sequences 132

Using anchors to maintain position .. 134

Coming up with alternatives .. 135

Making use of RegEx in Windows PowerShell 136

DropBooksDropBooks

Windows PowerShell 2 For Dummies xii
Chapter 10: I’ll Take Numbers for $100, Please 137

Putting Numeric Data Types under a Microscope 137

Having a look at integral data types .. 138

Getting precise using nonintegral data types 139

Doing Some Calculations .. 139

Adding things up .. 140

Reducing values with subtraction ... 142

Expanding through multiplication ... 143

Reducing through division ... 143

Rounding Off Values .. 144

Creating Random Numbers .. 145

Converting Numbers ... 145

Watching Out for Overfl ow ... 146

Chapter 11: Grouping Data Using Arrays and Hash Tables 147
Taking an In-Depth Look at Arrays .. 148

Creating and Using Arrays .. 148

Accessing array elements ... 149

Looping through arrays .. 150

Growing Arrays Dynamically ... 151

Creating Multidimensional Arrays .. 152

Finding Other Uses for Arrays ... 153

Working with Hash Tables: The Array’s Useful Cousin 155

Creating and using hash tables .. 155

Modifying hash tables ... 157

Looping through hash tables ... 158

Chapter 12: Readin’ and Writin’ Files .159
Having Some Fun with the File System ... 159

Moving around the fi le system ... 160

Managing directories ... 160

Manipulating fi les in the fi le system .. 162

Reading Text Files ... 163

Writing Files ... 164

Working with XML ... 166

Reading and writing XML fi les .. 168

Saving objects in XML fi les ... 169

Working with HTML .. 171

Chapter 13: Going On a Date with PowerShell175
Going On Your First Date .. 175

Getting the date and time in a specifi c format 176

Creating your own dates ... 178

Using Date Math (It’s Not Just for Nerds) .. 179

Calculating time differences ... 179

Looking into the future.. 180

Checking whether it’s daylight saving time.................................... 181

DropBooksDropBooks

xiii Table of Contents

Dealing with Time Zones .. 182

Standardizing with Coordinated Universal Time 182

Using the TimeZone class ... 183

Part IV: Controlling Where and How You Operate
PowerShell ... 185

Chapter 14: Using Functions to Divide and Conquer 187
Reusing Code Using Functions ... 187

Creating your fi rst function .. 188

Defi ning parameters .. 189

Returning values .. 191

Using Scope .. 193

Understanding scope rules ... 193

Watching out for name overlap ... 195

Defi ning functions in Global scope .. 197

Creating Your Own Cmdlets — Advanced Functions! 197

Understanding the structure of Advanced Functions 198

Defi ning attributes ... 199

Defi ning parameters .. 200

Using methods.. 204

Running Advanced Functions... 204

Finding uses for Advanced Functions ... 207

Chapter 15: PowerShell Ninjas: Running Jobs Remotely or
in the Background .209

Using Background Jobs ... 210

Enabling WinRM ... 210

Starting a new job .. 210

Getting results .. 211

Waiting for a job ... 213

Terminating a job ... 214

Bringing a job to a grinding halt .. 214

Running Commands Remotely ... 215

Using Windows PowerShell everywhere ... 215

Getting what you need for remote commands............................... 216

Speaking PowerShell with a different computer 216

Invoking commands remotely .. 217

Creating a persistent connection ... 218

Running remote background jobs ... 219

Understanding policies, profi les, and precedence 221

DropBooksDropBooks

Windows PowerShell 2 For Dummies xiv
Chapter 16: Making Your Script Speak Different Languages 223

Seeing the Importance of Internationalizing Scripts 224

Giving Your Scripts Different Tongues ... 224

Using new internationalization features ... 225

Understanding cultures .. 226

Putting it all together... 226

Sharing Scripts with Others ... 229

Chapter 17: Smashing Those Bugs .231
Finding Out Where the Bugs Come From ... 231

Guarding against unexpected input .. 232

Watching out for incorrect logic .. 232

Expecting the unexpected: System errors 233

Understanding the Debugging Process ... 233

Working On Your Defense .. 235

Working with Debugging Tools .. 237

Working with breakpoints .. 238

Setting fancier breakpoints... 240

Issuing debugger commands .. 240

Listing all breakpoints ... 241

Disabling and enabling breakpoints .. 242

Removing breakpoints .. 243

Part V: Real-World Windows Administration
Using PowerShell ... 245

Chapter 18: Mission Control: All Systems Go .247
Monitoring Drive Space .. 247

Converting to Windows Management Infrastructure

from System.IO.DriveInfo .. 251

Managing Windows Services .. 253

Controlling services ... 254

Confi guring services .. 256

Checking Your Event Logs .. 257

Querying EventLogs Using WMI .. 258

Chapter 19: Taming the Windows Registry .261
Following the Registry Tree ... 262

Connecting to the Windows Registry .. 263

Navigating the registry by using the PowerShell drives 264

Using Microsoft.Win32.RegistryKey to access the registry.......... 265

Reading Keys and Values .. 267

Writing Keys and Values ... 268

Writing keys and values using the PSDrive 268

Writing registry values using Microsoft.Win32.RegistryKey 269

DropBooksDropBooks

xv Table of Contents

Renaming and Deleting Registry Keys and Values 270

Renaming and deleting registry keys and Values

using PSDrive .. 271

Using Microsoft.Win32.RegistryKey to delete registry

keys and values .. 271

Chapter 20: Reaching Out to Active Directory 273
A Really Brief Active Directory Primer ... 274

Connecting to Active Directory ... 274

Querying for Objects and Attributes ... 275

Creating your LDAP fi lter .. 277

Dynamically obtaining a user’s distinguishedName 282

Modifying Object Attributes ... 283

Updating Group Membership .. 284

Getting to the Raw ADSI Object Using psbase ... 285

Chapter 21: PowerShell Lockdown. .287
PowerShell Security Features .. 288

Getting rid of the current directory loophole 288

Stopping the double-click blues ... 288

Protecting through ExecutionPolicy ... 288

Generating a Code-Signing Certifi cate ... 290

Creating a self-signed certifi cate .. 290

Requesting a certifi cate from your Enterprise CA 293

Browsing the Certifi cate Store ... 294

Signing Your Scripts .. 295

Managing the Windows Firewall .. 297

Defi ning globally open ports .. 298

Listing fi rewall services ... 299

Allowing applications to get through .. 299

Chapter 22: Converting Your Old Scripts: Out with the Old,
In with the New .301

Converting a Windows Shell Script to Windows PowerShell 302

Echoing to the screen .. 302

Using conditional statements ... 303

Migrating that FOR command .. 304

Converting a Windows Scripting Host Script to Windows

PowerShell .. 306

Comparing the basics .. 307

Working with COM objects ... 307

Understanding the difference between CreateObject and

GetObject .. 309

Handling I/O .. 311

Working with ActiveX Data Objects (ADO) 312

Leveraging ADO.NET to your advantage .. 313

DropBooksDropBooks

Windows PowerShell 2 For Dummies xvi
Part VI: Configuring and Reporting Via PowerShell 317

Chapter 23: Controlling Your Network Confi guration 319
Managing Your Network Settings .. 320

Familiarizing yourself with

Win32_NetworkAdapterConfi guration .. 320

Retrieving your TCP/IP settings ... 322

Manipulating your TCP/IP settings .. 323

Managing Your Windows Firewall ... 325

Getting to know the Windows Firewall COMmander 326

Enabling and disabling the Windows Firewall 327

Making yourself visible ... 328

Getting a list of all authorized applications.................................... 328

Getting a list of all globally open ports ... 329

Using the big reset button .. 329

Chapter 24: Managing Your Hardware. .331
Polling Your Hardware .. 332

Finding out what hardware you have .. 332

Checking hardware state .. 340

Controlling Your Printers ... 341

Connecting to a shared network printer... 341

Disconnecting a shared network printer .. 342

Setting the default printer... 342

Checking up on printer state .. 342

Keeping an eye on the printer queue .. 343

Chapter 25: Making Reporting Easy .345
Using Built-In Reporting Cmdlets .. 346

Generating Reports ... 346

Customizing tabular output with Format-Table............................. 347

Setting column width in Format-Table .. 348

Using an interactive data table .. 348

Preparing data for other reporting tools .. 349

Making your data table ready .. 350

Making Reports Pretty .. 352

Formatting Using Cascading Style Sheets .. 353

Using Third-Party Reporting Tools ... 355

DropBooksDropBooks

xvii Table of Contents

Part VII: The Par t of Tens.. 357

Chapter 26: The Ten Most Important Cmdlets .359
Getting Help with Get-Help ... 359

Getting to Know Your Objects with Get-Member 360

Navigating with Set-Location ... 360

Reading Text Files with Get-Content ... 361

Writing to a File with Out-File .. 361

Leveraging WMI with Get-WMIObject ... 362

Creating New Objects with New-Object .. 362

Getting Picky with Select-Object ... 362

Going Through Collections with Foreach-Object 363

Controlling the Pipeline with Where-Object .. 364

Chapter 27: Ten Common PowerShell Mistakes 365
Forgetting to Change the Execution Policy .. 365

Using Commas to Separate Parameters When Calling a Function 366

Defi ning Functions After You Use Them ... 367

Treating Pipeline Data as Strings ... 368

Forgetting to Cast Variables as a String .. 369

Using Incorrect Comparison Operators ... 370

Trying to Do Too Much in One Pipeline ... 372

Forgetting About Variable Scope ... 372

Not Using the Debugger .. 373

Not Using .NET Classes When Available ... 374

Bonus Chapter 1: Handling Exceptions .1
Handling Errors the Old-Fashioned Way .. 1

Understanding Exceptions ... 2

Trapping Exceptions ... 3

Throwing Exceptions .. 6

Index ... 375

DropBooksDropBooks

Windows PowerShell 2 For Dummies xviii

DropBooksDropBooks

Introduction

Welcome to Windows PowerShell 2 For Dummies, your ticket to the awe-

some and magical world of Windows PowerShell. (Well, maybe it’s not

quite so magical, but at least your co-workers will think you’re magical when

you’re done reading this book.) This book is a no-fluff, get-you-the-information-

you-need-today kind of book, so if you like to read chapter after chapter of

boring technical literature that keeps going around in circles, put this book

back on the shelf, and walk away quietly. If, however, you want to read a book

that is engaging, gives you the information you need to know rather than just

a bunch of things you might want to know, and gets you up and running with

Windows PowerShell as quickly as possible, then this book is for you!

About This Book
Windows PowerShell 2 For Dummies is an introductory guide to this relatively

new and fascinating Windows scripting environment that’s revolutionizing

the way programmers think about Windows scripting. Before Windows

PowerShell 2, there was Windows PowerShell 1.0 (what a shocker!).

Windows PowerShell 2 takes the best elements of Windows PowerShell 1.0

and greatly improves on them, thanks in great part to the feedback from

the Windows PowerShell community.

My goal in this book is to give you a concrete understanding of how things

work in Windows PowerShell and fortify that knowledge with plenty of real-world

examples that I’m sure you’ll be able to relate to. In many cases, very short and

quick examples are sufficient, but I also make sure to provide larger, slightly

more complicated (yet infinitely useful) scripts whenever possible so that you

can see how various concepts can be strung together into one cohesive unit.

This book is logically organized so that if you read it from cover to cover, you’ll

build on knowledge from earlier chapters to keep advancing your Windows

PowerShell skills and level up (as they say in the role playing gaming world).

Each chapter, however, is written as an independent unit that you can use as a

reference for years to come as you find the need to go back and brush up

on things.

DropBooksDropBooks

2 Windows PowerShell 2 For Dummies

Because Windows PowerShell 2 can be installed in different Windows oper-

ating systems, the examples are designed to be operating system–agnostic

whenever possible. This way, you aren’t going to miss anything, regardless of

whether you run the program under Windows XP, Windows Vista, Windows

Server 2003, Windows Server 2008, or even Windows 7.

After reading this book, you’ll be able to piece together your own Windows

PowerShell scripts that’ll be sure to impress your boss, not to mention save

you a ton of work and time. In fact, when you know how to use Windows

PowerShell to your advantage, you’ll have much more free time to do more

interesting things, such as read this book again.

To mention briefly what this book is not, it’s not an all-inclusive, everything-

you’ll-ever-want-to-know-about-Windows PowerShell reference. As you read

this book, however, you’ll realize how truly powerful Windows PowerShell is,

because the book covers all the most important things you need to know.

 This book is written to Windows PowerShell 2 CTP3. Windows PowerShell 2 has

already come a long way since it was first announced to be under develop-

ment, and I feel that any changes that Microsoft might make before the final

release is out will be some bug fixes and perhaps some changes to some very

advanced features (which this book doesn’t delve into). That being said, we’ll

keep you up to date with any applicable changes through the Windows Power
Shell 2 For Dummies Web site (www.dummies.com/go/powershell2fd), so

keep yourself informed by visiting the site regularly.

Conventions Used in This Book
In this book, you enter a lot of commands at the Windows PowerShell com-

mand prompt or write scripts in a text editor such as Notepad. Scripts and

code listings always appear in monofont, like this:

$str1 = “Hello “
$str2 = “World!”
write-output $str1 + $str2

 Make sure that when you enter commands, you type them exactly as they

appear in the book. Windows PowerShell is forgiving about things like spaces,

but in general, if you encounter problems running any of the examples, first

make sure that you’ve entered the example exactly as it appears in the book.

You’ll be required to use your keyboard quite a bit with Windows PowerShell.

Fortunately, you can make your life a bit easier by taking advantage of

several keyboard shortcuts. When I direct you to use a keyboard-shortcut

DropBooksDropBooks

3 Introduction

sequence such as Ctrl+S, press these keys on your keyboard simultaneously;

then release them together. The plus sign is there to show that the keys are

to be pressed together; you don’t type the + sign.

What You’re Not to Read
This book contains everything you need to know and a few things that are good

to know. I’ve separated the good-to-know stuff into sidebars (which are shaded

in gray) and paragraphs marked with the Technical Stuff icon. You can skip

these sections and still survive the day, but feel free to read them; some of

them contain some pretty useful information that you may need someday to

win a game show.

Foolish Assumptions
Whenever I pick up a technical book, I want to know that it was written for

someone like me, so I want to be clear about my assumptions of what you

know and what you don’t know before you dive into this book.

For starters, I’m assuming that you know how to use a computer. (Yes, if you

haven’t noticed already, you’re holding a computer book. If you thought it

was something else, such as a cookbook, feel free to nod a few times; put the

book down; and walk a few aisles down to find the other For Dummies book

you had in mind.)

You should also know how to use at least one of the operating systems

supported by Windows PowerShell, such as Windows XP, Windows Vista,

Windows Server 2003, Windows Server 2008, or Windows 7.

I don’t expect you to know any kind of scripting or programming language

(although it helps if you do). I go over everything you need to know, even if this

is your first time. (It’s okay; I don’t bite.) Many of my examples cover ways to

use Windows PowerShell to manage a Windows environment, including Active

Directory, so preferably, you have some Windows administration under your

belt. If you don’t, don’t worry; you still find plenty of useful information in

this book.

Finally, although the title of this book is Windows PowerShell 2 For Dummies,
I know that you’re not a dummy (but I bet that guy who’s staring at you

for having a For Dummies book in your hand is). I know that you’re a smart

DropBooksDropBooks

4 Windows PowerShell 2 For Dummies

individual who knows that the best way to start any new topic (especially a

scripting or programming language) is to pick up a For Dummies book.

So without attracting too much attention, give yourself a round of applause;

then quickly move toward the counter and buy this book. While you’re at

it, get copies for your colleagues, too. It’s the best compliment you can give

them. Seriously, it is!

How This Book Is Organized
There are no surprises here. I’ve organized the book to make it easy for you

to find what you’re looking for. Whether you need to look up something

quickly or feel like reading this book in your leisure time, you’ll feel right at

home. I’ve broken this book into seven parts so that you can pace yourself.

Part I: Getting a Bird’s-Eye
View of PowerShell 2
I find it easy to see trees and miss out on the entire forest, so I’m starting this

book with a soaring, 10,000-foot (3,048-meter) view of Windows PowerShell 2.

Chapter 1 helps you get your arms around Windows PowerShell by giving you

an understanding of how it got where it is today. I show you how to customize

the environment to best fit your style and some different time-saving tech-

niques that help get you going faster in Chapter 2. Finally, Chapter 3 gives

you your first taste of this amazing shell. Consider Part I to be your gateway

to the world of Windows PowerShell.

Part II: PowerShell’s Basic
Structure and Syntax
Part I gives you your first taste of Windows PowerShell. Part II takes a step

back by providing a detailed look at the structure and syntax that define

Windows PowerShell. Think of this part as me showing you how to speak the

Windows PowerShell language. Every scripting and programming language

defines constructs for how to interact with it. Unfortunately, unlike humans

(well, most humans), computers need precise instructions on what you want

them to do, so getting this part right will pave the way for a smooth experi-

ence later.

DropBooksDropBooks

5 Introduction

Chapter 4 goes over Cmdlets, which are the basic commands that form the

foundation of Windows PowerShell. I show you how to store data temporarily

in your scripts using variables in Chapter 5. Chapter 6 goes on to show the

different ways you can put some intelligence into your code by using logic

expressions to control the flow of code within your script. Finally, Chapter 7

shows how you can make very effective command sequences by feeding the

output of one command to the input of another command creating a com-

mand pipeline.

Part III: Complex Data Description
and Sharing
Now that you know how to speak the language, Part III raises the bar and

introduces more complex Windows PowerShell activities, such as interacting

with Windows Management Instrumentation (WMI) in Chapter 8 and manipu-

lating text in Chapter 9. You also get to see the power of numbers in Chapter 10.

You discover how to take advantage of groups of data by using arrays in Chapter

11 and how to deal with reading and writing files in Chapter 12. Chapter 13 takes

you on a journey through time by showing how you can use dates and times

within PowerShell. The great thing about Windows PowerShell is that it

makes even these relatively complex operations a breeze.

Part IV: Controlling Where and
How You Operate PowerShell
Many of the features I cover in this part are, unfortunately, quite lacking in

Windows PowerShell 1.0. After months of crying and whining (who said

whining doesn’t work?) from the Windows PowerShell community, the

super-smart Windows PowerShell developers at Microsoft responded

with some enhancements that really make Windows PowerShell 2 shine.

In this part, I go into the more advanced features of Windows PowerShell,

including many new cool features introduced in Windows PowerShell 2. You

create your own commands using Advanced Functions in Chapter 14 and

obtain the ability to run scripts remotely in Chapter 15. I also show you how

to make your scripts work with in an international setting in Chapter 16 and

track down those ever-elusive bugs in Chapter 17. The enhanced capabilities

for debugging your scripts in Windows PowerShell 2 are some of the best

improvements in this new version of PowerShell.

DropBooksDropBooks

6 Windows PowerShell 2 For Dummies

Part V: Real-World Windows
Administration Using PowerShell
I know that the main reason you’re reading this book is to upgrade your skills

and become more efficient in your job. This part is dedicated to showing the

real power of Windows PowerShell through practical real-world examples.

You get to see for yourself how you can tie everything that you’ve accom-

plished in the preceding four parts into some truly useful scripts that’ll have

your co-workers looking at you with pure awe and admiration.

In this part, you get to see some scripts to monitor your system in Chapter 18,

meddle around in the Windows registry in Chapter 19, interact with Active

Directory in Chapter 20, and monitor system status and manage security in

Chapter 21. If you’re an old-time script writer who’s using Windows Shell

Scripti-ng or Windows Scripting Host, you get a glimpse of how those scripts

can be converted to Windows PowerShell in Chapter 22. Although this chap-

ter is aimed mostly at IT pros, there’s plenty of information in it for you, even

if all you manage is your own PC.

Part VI: Configuring and
Reporting Via PowerShell
In this part, I show you more real-world scenarios in which Windows

PowerShell can make your job easier. You find out how to control your net-

work configuration, such as TCP/IP and firewall settings in Chapter 23, and

how to manage your hardware with nothing but Windows PowerShell in

Chapter 24. You also find out how you can make your boss happier and your

life easier by using the built-in features of Windows PowerShell to generate

reports right from your script’s output in Chapter 25.

Part VII: The Part of Tens
What would a good For Dummies book be without a good Part of Tens? After

all, it takes weeks of perspiration to weed through mountains of information

to bring you these lists of things you absolutely need to know. Find out in

Chapter 26 what the top ten Cmdlets are; in Chapter 27, you see the top ten

mistakes to avoid. It’s okay — I know you’re going to flip to the end of this

book to take a sneak peek, so go ahead.

DropBooksDropBooks

7 Introduction

Icons Used in This Book
 Tips highlight a point that can save you a lot of time and effort. Make sure that

your eyeballs light up whenever you see one of these icons.

 Warnings point out things you need to know to prevent something bad from

happening. Imagine nuclear meltdown — or worse, such as running out of

ketchup.

 This icon marks the stuff you can skip because it goes into some pretty techni-

cal details. Although this material isn’t critical to your understanding of how

to use Windows PowerShell, some stuff in these sections will make you sound

downright intelligent!

 Remember to remember anything that has the Remember icon. Remember that!

What’s on the Web Site
As much as I know how much you love typing lines and lines of code, I provide

the code for all the code listings in this book right on the book’s Web site

(www.dummies.com/go/powershell2fd) for you to download and use. This

site will save you time and also give you something to compare your code with

if, for some reason, you type the code manually and it doesn’t work correctly.

Again, this book is written to Windows PowerShell 2 CTP3. If there are any

changes to Windows PowerShell 2 in releases after CTP3, I will put that up as

errata on the Windows PowerShell 2 For Dummies Web site (www.dummies.
com/go/powershell2fd), so if something in this book doesn’t work quite

right, check the Web site for any tips or code updates.

Where to Go from Here
Go forth and multiply! Wait — wrong audience. Now that the easy part is done,

and I’ve got you salivating over Windows PowerShell, it’s time to get you to do

some work . . . err, have some fun! Sit down in front of a computer, get a can of

your favorite energy drink, and get ready for hours of eye-opening goodness.

Welcome to the world of Windows PowerShell. You’ll wonder how you ever

survived without it!

DropBooksDropBooks

8 Windows PowerShell 2 For Dummies

DropBooksDropBooks

Part I
Get ting a Bird’s-

Eye View of
PowerShell 2

DropBooksDropBooks

In this part . . .

It’s hard to really understand something without put-

ting it in context. These first three chapters paint the

scene for the rest of the book and give you a taste of what

Windows PowerShell 2 is like. I like to think of this part as

a quick tour of Windows PowerShell, past and present, so

that you not only understand why Windows PowerShell is

the way it is but also to demonstrate some of the things

you can accomplish with it that I hope will create a thirst

for more.

Chapter 1 helps you get your arms around Windows

PowerShell by giving you an understanding of how it got

where it is today. I show you how to customize the environ-

ment to best fit your style and some different time-saving

techniques that help get you going faster in Chapter 2.

Finally, Chapter 3 gives you your first taste of this amazing

shell.

DropBooksDropBooks

Chapter 1

The Windows PowerShell
Rap Sheet

In This Chapter
▶ Following the birth and evolution of Windows PowerShell

▶ Installing Windows PowerShell 2

▶ Interacting with the Windows PowerShell command shell

▶ Using the Integrated Scripting Environment (ISE)

I’m a really lazy person by nature. I’m not lazy in the sense that I like to sit

down and do nothing all day long, but rather I hate doing things over and

over again. Whenever I find myself doing something very mundane, the first

thing that pops into mind is “there has to be a way to automate this!” Computers

are great work horses. They can run day in and day out and never complain.

Logically, it makes sense to make your computer work for you rather than the

other way around, so in my infinite laziness I’m constantly cooking up ways

to make my computer work harder so I can have time to do more important

things . . . like write this book for you.

Whether you’re completely new to scripting or have done some level of auto-

mation in the past using other scripting languages, you’ll really love Windows

PowerShell. It gives Windows users a true shell that provides the same power

over the Windows system that only people in the Unix/Linux community enjoyed

previously. Microsoft has spent years and years trying to make Windows easier

to use, and in the process of doing so have made some things quite frustrating

for power users. (Remember when Microsoft was trying to force you to use wiz-

ards only?) Windows PowerShell is, in my mind, Microsoft’s way of acknowledg-

ing that a significant number of users know what they want and don’t want to sit

around all day long clicking through dialog boxes to get their jobs done.

DropBooksDropBooks

12 Part I: Getting a Bird’s-Eye View of PowerShell 2

Addressing the Need for a Powerful,
Windows-Focused Scripting Language

You’ve always had the standard Windows Shell, also known as the command
shell or the DOS prompt (for those who can’t let go of the past), to interact

with Windows at the command line. You can automate various aspects of

Windows from the command shell using built-in commands, other command

line applications, and even string them together into Windows Shell scripts

(or batch files for those still clamoring for the good old DOS days). If you want

a bit more power and control, you can use Windows Scripting Host (WSH)

and then use VBScript or JScript to automate your tasks. So the obvious

question is “why add Windows PowerShell to this mix?” After all, can’t you

accomplish everything you need to do using these existing methods?

Sure, a good portion of everything you need to do in Windows can be accom-

plished by writing a Windows Shell or WSH script. I’ve been doing it for years

with no problems, and when I first heard of Windows PowerShell being devel-

oped several years ago (when it was still under the codename Monad) I had

mixed feelings. On one hand, it promised a whole new way of doing things,

which was exciting, but on the other hand it just became one more thing I

needed to learn. As Windows PowerShell came into maturity, I clearly saw

that it really did live up to its promises, and I found myself jumping on the

Windows PowerShell bandwagon.

Watching Monad morph into PowerShell
Windows PowerShell was architected by Jeffrey P. Snover back in August 2002,

under the codename Monad. According to the original Monad Manifesto, it was

designed as the next-generation platform for administrative automation. It was

based loosely on the tried and proven approach for administrative automation

in Unix.

In traditional command shells, you achieve a desired action by manipulating

generally unstructured text output of a previous command to generate the

desired output or effect using another command. In a regular Windows

Command Shell, for example, you can use the following command sequence

to find out if pinging www.whitehouse.gov returns any replies.

ping www.whitehouse.gov | find “Reply”

In the example, you pass the output of the ping command against www.
whitehouse.gov into the find command because you want to filter the

DropBooksDropBooks

13 Chapter 1: The Windows PowerShell Rap Sheet

output so only the lines containing the word Reply get displayed. Monad tack-

led the limitations of this traditional method by devising a new approach for

building commands by leveraging the .NET framework and its object model.

Monad does this by defining an automation model where commands called

Cmdlets (read as command-lets) can pass data to each other as structured

objects rather than a loose collection of text.

My intent isn’t to give you a history lesson on Windows PowerShell but

rather to help you understand why it looks and acts the way it does. As you

use Windows PowerShell, you might notice, for example, that the command

syntax has a Unix feel to it. This isn’t by coincidence but rather due to the

language being modeled from powerful Unix shells with the added .NET twist.

Don’t be intimated, however — PowerShell is one of the easiest scripting lan-

guages to use and is very intuitive.

 If you want to read the Monad Manifesto as it originally appeared in 2002, you

can view it on the Windows PowerShell team blog (http://blogs.msdn.
com/powershell/archive/2007/03/19/monad-manifesto-the-
origin-of-windows-powershell.aspx).

A little bit on Windows PowerShell 1.0
Windows PowerShell brings together the best parts of interacting with the

traditional Windows Shell along with the power of writing WSH scripts. It

creates a rich command line–based environment that puts more power into

your hands by letting you run new PowerShell commands called Cmdlets.
These are .NET class–based commands that give you the flexibility of high-

level scripting while allowing you to access very low-level Application

Programming Interfaces (APIs) through .NET wrappers.

Windows PowerShell 1.0 was the first full-production release of Windows

PowerShell, and even though it delivered on many of the key elements

needed to use it, it was adopted slowly for a few reasons:

 ✓ It wasn’t built into any of the existing Windows operating systems, so

administrators who wanted to use it had to make a conscious effort to

deploy the PowerShell run-time.

 ✓ Administrators who had already mastered existing scripting languages

didn’t feel the need to use a new shell to accomplish the same tasks.

 ✓ As a new product, it took a while for enough people to start using it

before the Windows PowerShell community became proficient enough

to be able to demonstrate the more creative ways to use it.

DropBooksDropBooks

14 Part I: Getting a Bird’s-Eye View of PowerShell 2

Eventually Microsoft’s own developers started taking advantage of Windows

PowerShell 1.0, and it was soon adopted in their mainstream products like

Microsoft Exchange 2007 and Systems Center Operations Manager (SCOM,
formerly known as MOM). PowerShell 1.0 was then released with Windows

Server 2008 as an installable, out-of-box feature. You and I should be excited

about this because it really brings Windows PowerShell into the mainstream

and also demonstrates Microsoft’s commitment to bringing Windows

PowerShell into the forefront of its systems management strategies.

Windows PowerShell 2,
the Next Evolution

Despite the slow adoption of Windows PowerShell 1.0, a growing Windows

PowerShell community emerged and put it through its paces. The Windows

PowerShell developers at Microsoft took a lot of this feedback and criticism

to produce what promises to be a much more production-worthy scripting

environment — Windows PowerShell 2.

I’m sure enough time has now elapsed since you first heard about Windows

PowerShell that it has piqued your curiosity (which is probably one of the

reasons why you picked up this book). It’s a great time for you to discover

this scripting language because many of the limitations people faced while

working with Windows PowerShell 1.0 have since been worked out. What

you’re all left with is a much more usable command shell that offers a host of

different ways to do things. Your only real limit is your own creativity.

I know you’re already asking the obvious: What’s new in Windows PowerShell 2

that makes it so special? Here are some of the major changes and enhancements

made to Windows PowerShell:

 ✓ PowerShell remoting: Gives you the ability to execute Cmdlets and

scripts remotely. See Chapter 15.

 ✓ Background jobs: As the name implies, this improvement allows you to

run commands in the background while you continue to work on other

things. See Chapter 15.

 ✓ Advanced functions: Cmdlets used to be written only in C# and VB.NET.

Now you can write your command pseudo-Cmdlets using Windows

PowerShell itself. See Chapter 14.

 ✓ Data language: Gives you the ability to separate your code from the

data, making it more portable and easier to share.

 ✓ Script internationalization: Helps scripts that have to accommodate

multiple languages easier to implement. See Chapter 16.

DropBooksDropBooks

15 Chapter 1: The Windows PowerShell Rap Sheet

 ✓ Script debugging: Finally, real debugging. You can set breakpoints in

your scripts so you can halt execution to find out what’s going on at a

particular point in the script. See Chapter 17.

 ✓ Some new operators and automatic variables: Some new operators

to make it easier to split and join strings and automatic variables for

accessing user interface language information. See Chapter 5.

 ✓ Additional new Cmdlets: Mostly to support the preceding features.

 ✓ Constrained runspaces: Gives you the ability to constrain what

commands and scripts Windows PowerShell can run within a given

runspace.

 ✓ Runspace pools: You can think of these as ways to manage command

execution by pooling together runspaces.

 ✓ Integrated Scripting Environment (ISE): A graphical version of the

command shell that adds some cool new features such as multi-tabbed

panes for working with multiple scripts at the same time. See Chapter 2.

 ✓ Out-GridView: You can output the results of your commands in an inter-

active table where you can then sort, search, and group the results. See

Chapter 25.

 ✓ New PowerShell APIs: If you’re a programmer, you can get to the new

features provided in PowerShell directly using these APIs.

 ✓ Some minor enhancements to existing commands and shell behavior:

Some additional parameters to existing commands have been added to

increase functionality.

Even if you haven’t used Windows PowerShell in the past, you can tell just

by this list of new features that there are some significant enhancements to

Windows PowerShell that go beyond the surface. I think Windows PowerShell 2

is a more complete product that still makes it easy for new users like you to

master it while leaving plenty of room for you to grow.

What’s really amazing is that while I’d classify many of the changes in Windows

PowerShell 2 under an advanced feature category, discovering how to use

them is a quick and easy thing even for a beginner. Before you know it, and

with the help of this really cool book you’re reading, you too will be taking

advantage of these new features.

Installing Windows PowerShell 2
Words are just words. I know your heart is pumping already and you’re

about to scream at the top of your lungs “I want to use Windows PowerShell

already, stop talking and tell me how!” Because Windows PowerShell 2

DropBooksDropBooks

16 Part I: Getting a Bird’s-Eye View of PowerShell 2

doesn’t ship with any of the Windows operating systems except Windows 7,

you’ll generally need to install it first. Luckily, this task is relatively pain-free,

so stick with me for a few seconds.

 Windows PowerShell 2 is a replacement for Windows PowerShell 1.0. They

can’t co-exist on the same system, so if you already have Windows PowerShell

1.0 installed, make sure you uninstall it first. Note: To uninstall Windows

PowerShell 1.0, you might have to select the Show Updates option in the Add/

Remove Programs control panel applet for it to be visible.

 Windows PowerShell 2 can be installed on both the x86 and x64 platforms of

Windows XP with SP3, Windows Server 2003 with SP2, Windows Vista with

SP1, Windows Server 2008, and Windows 7.

You install Windows PowerShell 2 using these four simple steps:

 1. Download and install Microsoft .NET Framework 2.0

 2. Download and install Microsoft .NET Framework 3.5.1.

 Required for Windows PowerShell Integrated Scripting Environment

(ISE) and Out-GridView.

 3. Download and install WinRM 2.0 CTP3.

 This is required if you want to take advantage of the remoting and back-

ground jobs features.

 4. Download and install Windows PowerShell 2.

 I’m not going to give you step-by-step instructions here because it’s a

straightforward “next, next, next” installation.

Firing up the Windows PowerShell
Command Shell

Congratulations! Now that you’ve got Windows PowerShell 2 installed, you

can finally have some fun.

 First, going forward, you might see me referring to Windows PowerShell 2

simply as PSH. Not only will this save me from carpal tunnel syndrome, but

Windows PowerShell is often referred to as PSH within Windows PowerShell

community, so don’t be surprised if you see that abbreviation. (It’s also some-

times just called PS.)

DropBooksDropBooks

17 Chapter 1: The Windows PowerShell Rap Sheet

Fire up the PSH command shell by choosing Start➪All Programs➪Windows

PowerShell V2➪Windows PowerShell V2.

 If you’re running Windows Vista, you may need to right-click the shortcut and

choose the option to run as Administrator (running elevated) even if you have

administrative rights on the system if you get access denied errors.

Windows PowerShell 2 launches and the command shell opens, as shown in

Figure 1-1. It looks a lot like your old Windows command shell, except that

by default the background is blue and the prompt is prefixed by PS. You

can run some familiar DOS commands (such as DIR and CD), and they’ll still

work, but the output might look a bit different. Also, running some existing

command line applications like XCOPY.EXE works too! I get into how this all

works in future chapters, but the ability to run non-PowerShell commands is

one of the greatest things about PSH — you can start using PSH today as a

replacement command shell and run your old commands while getting famil-

iar with the new PSH way.

 PSH runs your regular command line applications as normal, but the built-in

commands such as CD and DIR are actually aliases to new PSH Cmdlets. This

is why the output of DIR looks a bit different. Also notice that you can’t use

the old switches (such as DIR /W) with DIR. The reason is because the under-

lying Cmdlet that DIR is mapped to uses different parameters. I talk more

about aliases in Chapter 2.

Figure 1-1:
The

Windows
PowerShell

command
shell.

DropBooksDropBooks

18 Part I: Getting a Bird’s-Eye View of PowerShell 2

Going GUI: The Windows PowerShell
Integrated Shell Environment (ISE)

The Windows PowerShell Integrated Shell Environment (ISE) is a bit of a

mouthful, but it’s really just a more graphically rich interface (see Figure 1-2)

for interacting with PSH. You launch it the same way as the regular PSH com-

mand shell (see the preceding section), but you select Windows PowerShell

ISE instead; select Start➪All Programs➪Windows PowerShell v2➪Windows

PowerShell ISE.

Figure 1-2:
Txhe

Windows
PowerShell

ISE.

Script pane/Editor pane

Output pane Command pane

DropBooksDropBooks

19 Chapter 1: The Windows PowerShell Rap Sheet

Here’s what you get with this handsome interface:

 ✓ Script/Editor pane: This is where you can view and edit your PSH scripts.

 ✓ Output pane: This is where the output of all your command or script is

displayed.

 ✓ Command pane: You can enter commands in this pane just as you

would in a regular PSH command shell.

You can also create PSH scripts by choosing File➪New to display the editor

pane above the output pane. If you’re working on multiple scripts, a tabbed

interface is displayed so you can easily switch back and forth between the

different script windows, as shown in Figure 1-3.

Figure 1-3:
 The

Windows
PowerShell
ISE window

with the
tabbed

script editor
interface.

DropBooksDropBooks

20 Part I: Getting a Bird’s-Eye View of PowerShell 2

You’ll also notice that when you have a script open, you can run it simply by

clicking the Run button (the right-pointing triangle, similar to the Play button

on a CD player) on the toolbar. The toolbar has all the standard text-editing

features as well as syntax highlighting, which makes editing your scripts a

bit easier on the eyes. The best part is that the debugger is easily accessible

from the Debug menu. (I cover debugging concepts in-depth in Chapter 17.)

The ISE is an excellent tool for writing, running, and debugging your scripts

in one easy-to-use environment. Think of it as a miniature Visual Studio for

Windows PowerShell. I talk more about the ISE in the next chapter.

 Although the ISE script pane is primarily designed for writing and editing

scripts, it’s a pure text editor, so you can use it to open or create plain text

files and XML files.

DropBooksDropBooks

Chapter 2

Customizing and Shortcutting
the Environment

In This Chapter
▶ Adding your own personal touch to the PSH Command Shell

▶ Making changes to your PowerShell Profile

▶ Customizing the Windows PowerShell Integrated Scripting Environment

▶ Working with Aliases

▶ Understanding the Tab key

I like to watch people while they work in front of their computers. I find it

fascinating. Call me weird (it’s okay; plenty of people do), but it’s interest-

ing to see the different ways people choose to interact with their computers.

For instance, I used to work with a Windows administrator who rarely used

the keyboard shortcuts Ctrl+C and Ctrl+V to copy and paste items. He always

used the right-click-then-copy-and-paste method because he felt he was more

in control. (Yes, I make the same face you’re making now.) I also used to work

with someone who tried to do everything using the keyboard whenever pos-

sible and stayed away from the mouse as if it were the plague. I know others

who are very finicky about what toolbars they use and some on the extreme

end who even organize icons alphabetically. Whatever methods you use are

a-okay — after all, it’s always best to organize your work whichever way

makes you the most efficient.

I thought that before getting started working with Windows PowerShell, you

might find it useful to know different ways to customize the environment to

best fit your style. After all, the more comfortable you are with the interface,

the more intuitive and pleasant your experience will be. Also, following the

whole “I’m a lazy guy” theme, I show you different time-saving techniques that

help get you going faster. Does this sound interesting to you? Then read on!

DropBooksDropBooks

22 Part I: Getting a Bird’s-Eye View of PowerShell 2

Personalizing the Look and Feel
of the Command Shell

If you’re anything like me, you eventually find yourself with multiple com-

mand line windows open simultaneously because you, just like your com-

puter, like to multitask. One of the problems with having multiple command

shells open at the same time is figuring out which window does what. After

all, they all look the same, right? Well, not necessarily. You can use a few

handy tricks to make different windows more distinguishable:

 ✓ Change the background and foreground colors.

 ✓ Change the window size.

 ✓ Change the window title.

The following sections tell you how.

Adding color to your world
You can easily change the background and foreground colors to suit your

preference. For example, you can change the background color to magenta

and the foreground color (the color the text is displayed in) to blue by typing

these commands at the PSH prompt.

$Host.UI.RawUI.BackgroundColor=”magenta”
$Host.UI.RawUI.ForegroundColor=”blue”

 $Host is a special variable that is a reference to the current console object.

You assign the appropriate color to the UI.RawUI.BackgroundColor and

UI.RawUI.ForegroundColor properties of the console object.

Getting size-specific with your windows
The $Host.UI.RawUI object is actually pretty useful. You can query or

manipulate additional properties through this object to affect the console’s

appearance besides the foreground and background colors. You can change

the window size, the buffer size, and even change the window’s title. (The fol-

lowing section covers how to change the title.)

The buffer size is the width and height of the window retained in memory

where as the window size is the portion of the buffer that’s visible. Because

of this, the only real constraint is that your window size must be smaller than

DropBooksDropBooks

23 Chapter 2: Customizing and Shortcutting the Environment

your buffer size. (PSH won’t let you screw this up even if you try.) The buffer

height is important because it controls essentially how far back you can scroll

in your window as you run more and more commands. The default buffer

height is 3,000, which means the buffer keeps up to 3,000 lines of output before

it starts to discard older entries.

You change the window or buffer size by changing the value of either the

BufferSize or WindowSize property of $Host.UI.RawUI. If you want to

find out the current value, run the following PSH commands:

$Host.UI.RawUI.BufferSize
$Host.UI.RawUI.WindowSize

The output of either command is the width and height displayed in a tabular

format. Now, you might be tempted to try something like this to change the

window size:

$Host.UI.RawUI.WindowSize.Width = 110
$Host.UI.RawUI.WindowSize.Height = 40

Although PSH doesn’t complain, the window size doesn’t change, and if you

query the value of WindowSize again, you’ll find that the old values are still

there. The correct way to change WindowSize is by assigning a new value to

this property directly. Because WindowSize is an object, you need to some-

how create an object of that type, set its width and height properties, then

assign this new value to WindowSize. You can change the window size by

using the following command sequence:

$size = $Host.UI.RawUI.WindowSize
$size.Width = 100
$size.Height = 25
$Host.UI.RawUI.WindowSize = $size

Here I store the value of WindowSize in a variable called $size. I don’t

really care so much about what the current value is, but I need to have an

object that’s the same data type as WindowSize so I can make the change.

Now that I have such an object, I assign my new width and height values to

it and then reassign this entire object back to WindowSize. If you want to

change the buffer size, simply replace WindowSize with BufferSize.

 I talk more about data types and objects in Chapter 5, so if you’re eager to find

out more about what these things are right now, you can mark this page and

jump over to it if you want.

 Window and buffer width and height dimensions aren’t measured in pixels —

rather, width is measured by the number of characters that fit on one row,

and height refers to the number of rows it can accommodate.

DropBooksDropBooks

24 Part I: Getting a Bird’s-Eye View of PowerShell 2

A window by any other name . . .
Probably one of the easiest and most useful properties to modify is the

WindowTitle property. You can change the title to something interesting

like “Windows PowerShell Rules!” (see Figure 2-1) by running this line:

$Host.UI.RawUI.WindowTitle=”Windows PowerShell Rules!”

Now you can easily distinguish one PSH window from another by quickly

reading the window’s title.

Figure 2-1:
Windows

PowerShell
with a

renamed
window

title.

Changing Your PowerShell Profile
I’m sure you had fun playing with colors and resizing your PSH window in

the previous sections, but as you probably observed, the changes aren’t

preserved when you close the window. Sure, you can enter these commands

each and every time you open a new PSH window, but that can get a bit

tedious. What if you want these settings to be applied by default every time

you open a PSH shell? No worries. Whenever you open Windows PowerShell,

one of PSH’s regular startup chores is to run your profile script (if it exists).

Your profile script is a special script that runs every time you open a new PSH

command shell. If it doesn’t exist (which it doesn’t, by default), PSH skips it

and moves on.

DropBooksDropBooks

25 Chapter 2: Customizing and Shortcutting the Environment

You can find out where your profile is by running this command at the PSH

prompt:

$profile

Yep, that’s it! By default, the profile location should point to a file called

Microsoft.PowerShell_profile.ps1 in a folder called WindowsPower
Shell in your My Documents folder. For example, on my workstation, it

returns C:\Documents and Settings\steguis.MONKEY\Documents\
WindowsPowerShell\Microsoft.PowerShell_profile.ps1.

 The Windows PowerShell Integrated Scripting Environment (ISE) has its own

profile script, which is in the same location (by default) as the regular profile

script, except it’s called Microsoft.PowerShellISE_profile.ps1.

If you happen to have an existing profile, open it up in Notepad; otherwise,

create a blank text file using Notepad in the location pointed to by $pro-
file. This profile is really just a PSH script that gets executed whenever a

shell is launched.

 Before you can create the profile file, you might have to create the

WindowsPowerShell folder in your My Documents folder if it doesn’t

already exist.

You can stick any PSH code you want executed every time a shell is opened

in your profile. Because you want to customize your interface, you can enter

something like this:

$Shell = $Host.UI.RawUI
$Shell.WindowTitle=”PowerShell Obeys Me”
$Shell.BackgroundColor=”White”
$Shell.ForegroundColor=”Blue”
$size = $Shell.WindowSize
$size.width=120
$size.height=55
$Shell.WindowSize = $size
$size = $Shell.BufferSize
$size.width=120
$size.height=5000
$Shell.BufferSize = $size
Clear-Host

Save this file and then open a new PowerShell window. Unless Windows Power

Shell was installed and preconfigured for you by someone else, chances are

good that all you get is an error that looks something like Figure 2-2.

What’s this all about? Believe it or not, this error is Microsoft’s way of looking

out for you. Remember all those viruses that started spreading like wildfire when

Microsoft started shipping Windows Scripting Host (WSH) with Windows

DropBooksDropBooks

26 Part I: Getting a Bird’s-Eye View of PowerShell 2

2000? That was because by having WSH installed, you automatically had the abil-

ity to run any WSH script, and a lot of malicious people out there took advantage

of this behavior to get unsuspecting users to run their code. Well, the folks over

in Redmond got a bit smarter this time around and have taken a bit of a more

conservative approach. By default, Windows PowerShell won’t let you run any

script (not even your profile) unless it has been signed using a trusted certificate

issued either by a Certificate Authority or a self-generated certificate using the

Microsoft .NET Framework Software Development Kit (SDK).

This is really for your protection. Imagine if Windows PowerShell automati-

cally executes a profile script without checking with you first. All a virus or

worm writer needs to do is create or replace your PSH profile script, and the

next time you open PSH, the malignant profile script will automatically do its

nasty deeds.

I’m not going to discuss the creation of certificates or even how to sign scripts

right now because I get to that in greater detail in Chapter 22. However, I strongly

recommend that if you do decide to use PowerShell heavily in your environment

that you take advantage of this security feature. For now, if you want to see how

the profile works, you can change the default behavior of PSH and tell it to allow

any script that’s local to the system but still require any scripts run from other

locations (such as network drives) to require a signature. You change this

behavior by running this command:

Set-ExecutionPolicy RemoteSigned

Figure 2-2:
Error

loading the
Windows

PowerShell
profile
script.

DropBooksDropBooks

27 Chapter 2: Customizing and Shortcutting the Environment

By default, the execution policy is Restricted, which means no scripts can be

run and only interactive commands are allowed. When you change the execu-

tion policy to RemoteSigned, it eases up this restriction for locally stored

scripts. Close your PSH window and open up a brand-new shell and watch

how the title, color, and size all change before your very eyes.

 Notice the Clear-Host command I added at the end of the profile script. All

I’m doing is clearing the screen. This command is also useful if you have a lot

of things on the screen and want to quickly clear it so you have a blank slate.

You can also simply run cls to perform this task just as you could do in the

traditional Windows shell.

Making the Windows PowerShell
ISE Work for You

The Windows PowerShell ISE makes it really easy to work with Windows

PowerShell. You launch the PowerShell ISE by choosing Start➪All

Programs➪Windows PowerShell V2➪Windows PowerShell V2. Because it’s

designed around very common Windows concepts, it doesn’t take long to

figure out how to use it. However, some improvements might not be directly

obvious. For instance, getting help has never been easier. Just highlight the

Cmdlet you want more help for, press F1, and the handy Windows help file

showing the Cmdlet’s syntax and all other kinds of useful information is

displayed.

 If you have the name of a Cmdlet in one of the panes and that pane is active

(for example, the script pane or the command pane), pressing F1 automati-

cally brings up the help for that Cmdlet without you selecting the Cmdlet

name first.

In the command pane, if you want to enter multiple commands before running

them in Windows PowerShell, you can press Ctrl+Enter to go to the next line

without running the command in that pane. When you’re ready, you can run

the command sequence by pressing the green Run button or by pressing Enter.

If you want to run only part of a script or maybe even a single command

within a script, you can do so by highlighting the section you want to run

and then pressing the Run button. Only the portion of the script that’s high-

lighted runs, rather than the entire script.

DropBooksDropBooks

28 Part I: Getting a Bird’s-Eye View of PowerShell 2

Customizing the ISE
Just as the Windows PowerShell console has a $host variable that you can

use to access the console object, the ISE has a $psISE variable that lets

you access the ISE host. Because you can access and even control the ISE

through the $psISE variable, you can customize the color scheme of your

ISE through the $psISE variable’s options property.

Here’s what I get when I check to see what the $psISE.options object

contains:

PS C:\Windows>$psISE.options
TokenColors : {[Attribute, #FFADD8E6], [Command, #FF0000FF],

[CommandArgument, #FF8A2BE2], [CommandParameter, #
 FF000080]...}
DefaultOptions : System.Management.Automation.Host.DefaultOptions
FontSize : 12
FontName : Lucida Console
OutputPaneBackground : #FFF0F8FF
OutputPaneTextBackground : #FFF0F8FF
OutputPaneForeground : #FF000000
CommandPaneBackground : #FFFFFFF0
ScriptPaneBackground : #FFFFFFFF
ShowWarningForDuplicateFiles : True
ShowWarningBeforeSavingOnRun : True
LocalHelp : True
CommandPaneUp : False
ScriptPaneRight : False

You can change any one of those values to your liking. For instance,

you change the output pane background to black by setting the

OutputPaneBackground property to black:

$psISE.options.OutputPaneBackground=”black”

As in the Windows PowerShell console, you can put any of these changes into

your ISE profile script so that when you launch it, it has all the customiza-

tions you want.

Adding your own functions
to the ISE menu
By far, one of the best features within the ISE is the ability add your own

menu items. This feature allows you to add whatever kind of automation you

want and make it available as both a menu item and a keyboard shortcut.

To do this, you write your own function then access the $psISe variables’s

CustomMenu.Submenus collection using the Add method. Here’s a very

DropBooksDropBooks

29 Chapter 2: Customizing and Shortcutting the Environment

simple bit of code you can stick in your ISE profile script to demonstrate this

functionality:

function My-Custom-Function
{
 Write-Host “Running my custom function!”
}

$psISE.CustomMenu.Submenus.Add(“Run Custom Function”,{My-Custom-
Function},”Shift+Ctrl+f”)

This code defines a simple function called My-Custom-Function, which

displays the text “Running my custom function!” in the output pane. The

$psISE.CustomMenu.SubMenus.Add method takes three parameters.

The first parameter is the name you see in the menu. The second parameter

defines what to run, which in this case is the My-Custom-Function func-

tion. The last parameter is the keyboard shortcut you want to assign to it.

Here, I assign Shift+Ctrl+F. When I press Shift, Ctrl, and F together on the key-

board, this key sequence causes the function to run as well. You can see how

the ISE adds a Custom menu and then adds the submenu item you created

using the Add method in Figure 2-3.

 If you don’t want to assign a keyboard shortcut to a menu item, you can just

give the value $null in its place.

Figure 2-3:
The Custom
menu of the
PowerShell

ISE.

The Custom menu

DropBooksDropBooks

30 Part I: Getting a Bird’s-Eye View of PowerShell 2

Creating Aliases
As you work more in PSH, you’ll notice that you use some commands more

than others and, because all Windows PowerShell commands are in the verb-

noun format (for example, Set-ExecutionPolicy), the length of these

commands can get very tedious and error prone. This is where aliases come

in handy. An alias acts as a second name to whatever command you desig-

nate to it. Remember, in the traditional Windows Shell you normally write

a batch file to have this kind of behavior. In Windows PowerShell, the alias

feature is built in.

For some reason, I find myself using Notepad and the Windows calculator a

lot. If I’m in PSH, one of the easiest ways for me to start either of these pro-

grams is by typing notepad or calc in the command line and pressing Enter.

Because I’m lazy and like to save myself time whenever possible, rather than

typing notepad or calc I just want to type np for notepad or cl for calc. You

can easily do this by running

New-Item alias:cl -value c:\windows\system32\calc.exe
New-Item alias:np -value c:\windows\system32\notepad.exe

This method also works for PSH commands such as Set-Execution. If you

want to run Set-Execution by typing se, you run

New-Item alias:se -value Set-Execution

You need to specify the full path only if you’re pointing to an external com-

mand such as an application. If you change your mind and want the alias

se to refer to something completely different, you don’t need to delete and

recreate it. All you have to do is redefine it using the Set-Item command.

Here’s how you change the se alias to run a new, made-up command called

Show-Monkeys:

Set-Item alias:se -value Show-Monkeys

You can also define various scope options when creating a new alias. A scope

is just a definition for where an item can be accessed. The scope options are:

 ✓ None: A regular alias that you can use and delete at will. None is the

default option.

 ✓ Constant: Constant aliases can’t be deleted, nor have their values

changed during the session.

 ✓ ReadOnly: ReadOnly aliases are like Constant aliases but can be

deleted and have its value changed, provided you specify the Force

parameter when it’s changed or deleted.

DropBooksDropBooks

31 Chapter 2: Customizing and Shortcutting the Environment

 ✓ Private: Private scoped aliases can be seen only with the

current scope.

 ✓ AllScope: AllScope is visible across all new scopes that are created.

You can combine options as well. For example, if you want to make the

np alias ReadOnly while the cl alias is Constant with its scope set to

AllScope, you can run this:

New-Item alias:cl -value C:\windows\system32\calc.exe -options
“AllScope,Constant”

New-Item alias:np -value C:\windows\system32\notepad.exe -options “ReadOnly”

 You can also use Set-Item to set the options for an alias after it has been

created.

One more thing that you might need at some point is the ability to rename

an alias. Suppose you have np defined as the alias for notepad but find that

it sometimes gets confused with other commands. You decide that you now

want the alias to be called note instead. The good news is you don’t have

to delete the alias and redefine it; instead, you can take advantage of the

Rename-Item command. You can rename the np alias to note using the fol-

lowing command sequence:

Rename-Item alias:np -newname note

 Another way to create and update aliases is using the New-Alias and Set-
Alias commands. These are more straightforward than using the New-Item

command. Using New-Alias, you can create the np alias with this command

sequence:

New-Alias np c:\windows\system32\notepad.exe

 Any alias you create during your PSH session is valid only for that given

instance of PSH. As soon as you close that window (which in turn closes the

session), all the new aliases you defined no longer exist.

Deleting Aliases
Needless to say, if you can create and update aliases, you also need the abil-

ity to delete aliases. Deleting aliases isn’t difficult at all because the opposite

of New-Item is Remove-Item. If you want to get rid of the se alias you cre-

ated earlier for Set-Execution, you can run this line:

Remove-Item alias:se

DropBooksDropBooks

32 Part I: Getting a Bird’s-Eye View of PowerShell 2

You can also delete multiple aliases at once. For example, if you define a

bunch of aliases such as myalias1, myalias2, and myalias3 and now want

to get rid of them, you can delete all aliases that start with myalias using

the following command:

Remove-Item alias:myalias*

If the alias you’re removing happens to be defined with the ReadOnly option,

you have to use the Force parameter to get rid of it (otherwise PSH will spit

out an error that it can’t be deleted), like so:

Remove-Item alias:se -force

Accessing the Alias Drive
I’m sure you know that you can use any letter in the alphabet as a drive letter,

but what’s an alias drive? Drives in PSH have a bit of a different concept. You

still have your usual drive letters that map to physical, logical, or network

drives, but you can also interact with other special drives. Among them is the

alias drive. The alias drive is a logical drive that stores aliases.

Think of the alias drive as a virtual drive that’s used much like a database

for your PSH shell. In this virtual drive, all your aliases are defined as items,

where each item contains a name and definition. The name is the alias name,

and the definition is whatever the alias is meant to represent. PSH has a long

list of predefined aliases, most of which are there to help users like you to

continue using familiar DOS-like commands to do traditional command line

tasks. For example, if you run the DIR command in PSH, PSH gives you a

directory listing, but the output looks a bit different. That’s because DIR is

actually an alias for the Get-ChildItem command, which is really different

from the “old” DIR command but, in the case of listing files and folders, is

functionally equivalent.

Want to find out what other aliases are out there? Easy! Run this:

Set-Location alias:
Get-ChildItem *

At the PSH prompt, the drive shows up as Alias:\ rather than your usual

drive letter. Also notice that there are lots and lots of predefined aliases, and

if you browse through the alias list you’ll notice a lot of familiar DOS and even

Unix/Linux commands in the mix. Notice anything else interesting? Both Set-
Location and Get-ChildItem have aliases, namely CD and DIR respectively.

I know what you’re thinking and you’re right: This means that the following

command sequence and the previous command sequence are equivalent:

DropBooksDropBooks

33 Chapter 2: Customizing and Shortcutting the Environment

CD alias:
DIR *

How’s that for backward compatibility? With this information in hand, I’m

sure the command you used for creating aliases (see the section “Creating

Aliases,” earlier in this chapter) makes more sense. The New-Item command

is a generic command used for creating a new item in a given namespace, so

when you create your alias you specify the path to the alias drive followed by

a colon and then the alias name followed by the value for this item. That com-

mand creates an alias item in the alias drive.

The fact that alias definitions can be treated as a drive is also the reason why

I chose to use New-Item in my examples for creating a new alias rather than

New-Alias — I want you to see the alias drive concept being used.

 Any alias you create during your PSH session is valid only for that given

instance of PSH. As soon as you close that window (which in turn closes the

session), all the new aliases you defined no longer exist.

Creating Persistent Aliases
Although creating aliases for each session is perfectly fine, most of the time

aliases are most effective and useful if they’re permanently available to you.

After all, you spend the time creating an alias to make running Notepad as

easy as typing np, but what’s the point if you have to redefine this alias every

time you open a new PSH window? What you need is a persistent alias — an

alias that is always defined no matter how many times you close and open

that PSH window.

This solution should be obvious to you if you read the “Changing Your

PowerShell Profile” section earlier in this chapter. Yes, that’s it; you can

create persistent aliases by defining aliases in your profile script! Because the

profile gets executed every time you open a new PSH window, it’s a perfect

location to define aliases so they’re immediately available to you as soon as

you open that window.

PSH also has two nifty commands that can assist you in making these aliases

somewhat persistent. You can use the Export-Alias command to export

all the alias information to a file and then import it using Import-Alias.

This export-then-import method makes defining aliases in your profile very

easy because you just need to import aliases from a file. It’s also highly useful

when you need to define the same set of aliases on multiple computers. You

can define them on one system, export the alias definition, and then distrib-

ute it to all the other systems (or store it in a central location that can be

read by all hosts).

DropBooksDropBooks

34 Part I: Getting a Bird’s-Eye View of PowerShell 2

You can easily export and import your aliases with the following command

sequence:

Export-Alias c:\myaliases.txt
Import-Alias c:\myaliases.txt

That wasn’t too difficult, was it? Export-Alias has some other useful

options you can specify. By default, Export-Alias creates the output file,

but if the file already exists the command overwrites the contents of that file.

If you want to make sure this doesn’t happen, you can use the noclobber

parameter so the command returns an error if the file already exists:

Export-Alias C:\myaliases.txt -noclobber

You can also append to an existing alias file. This feature is great if you have

aliases defined in different locations and are trying to consolidate them into a

single file. Here’s how:

Export-Alias C:\myaliases.txt -append

Getting to Know Tab Expansion
Tab expansion is one of those great, time-saving features in any command

line–driven interface and is really nothing new. After all, this exists even in

the traditional Windows command prompt. Windows PowerShell just extends

its usefulness. Tab expansion occurs when you enter the partial name of a

command, file, or folder and then press the Tab key to automatically com-

plete it for you. As always, you can use Tab expansion to expand a path that

you’ve started to enter at the prompt. If you are at the root of the C: drive

and want to get to Windows\System32, an easy way to do this would be the

following (assuming you are currently at the root of C:):

 1. Type CD WIN then press the Tab key.

 Unless you have any other folder that starts with Win, the text should

automatically expand to Windows.

 2. Immediately after WINDOWS, type \SYS and press Tab again.

 This will automatically expand to the first folder in C:\Windows that

starts with SYS. On a typical Windows installation, this will expand to

C:\Windows\System.

 3. C:\Windows\System isn’t what you want, so keep pressing Tab until

it says C:\Windows\System32.

 4. Now you can press Enter to execute the command and change to that

directory.

DropBooksDropBooks

35 Chapter 2: Customizing and Shortcutting the Environment

Although Tab expansion of file and folder paths is useful, Windows

PowerShell now includes the ability to expand commands as well. Not only

does expanding commands save time, but it also helps if you remember only

the first part of a command and want an easy way to find what commands are

available.

Suppose you want to export aliases and somehow forgot that the command is

Export-Alias. You can open up a command shell, type in Export-, and then

press the Tab key. Each press of the Tab key shows the next command that

starts with the pattern you provided.

You can even use Tab expansion to display available properties or functions

of a given object. Remember that code to store the current window size,

which I explain earlier in the chapter? Here it is again:

$size = $Host.UI.RawUI.WindowSize

If you run this command in PSH, you have the current WindowSize object

stored in $size. Now, if you want to change the Width property of that

object, you would normally type

$size.Width = 100

With Tab expansion, you can save your delicate fingertips by skipping a few

keystrokes. Rather than type $size.Width, you can just type $size.w, press

the Tab key, and voilà, PSH automatically types $size.Width for you! See the

Tab, embrace the Tab, love the Tab . . . it’s simply Tabulicious!

 If you’re absolutely in love with Tab expansion and want more than what’s

offered out of the box, then you’re in luck. Marc von Orouw (MVP Windows

Admin Frameworks), otherwise known as the PowerShell guy, created Power

Tab, which is an expansion of the Tab expansion feature. (Wow, that was a

mouthful.) Think of it as Tab expansion on steroids. You can download it from

his blog at http://thepowershellguy.com/blogs/posh/pages/
powertab.aspx.

DropBooksDropBooks

36 Part I: Getting a Bird’s-Eye View of PowerShell 2

DropBooksDropBooks

Chapter 3

A Pinch of Shell, a Pound of Power
In This Chapter
▶ Getting your feet wet with Windows PowerShell

▶ Writing your first script

▶ Previewing a complex script that’s as easy as pie

Throughout my career, I’ve found that many Windows administrators shy

away from command line interfaces or any kind of scripting. Some reasons

for this that have been mentioned to me are “it can be tedious,” “there’s a

lot you need to remember,” and “it’s easier to make mistakes in a command

line.” I have to admit that these points have some validity, though this topic

is highly debatable. I’m a bit of a 50/50 person myself, switching between

command line and GUI tools, depending on the need.

I’m a firm believer that there’s always more than one way to do things, and

I always like to pick the best tool to get the job done. Some tasks are more

efficient if you use a command shell, whereas others are far more convenient

and less error-prone when you’re using a GUI. If you’re lucky, you’re one of

those who like to work in command line interfaces (CLI), but if not, don’t let

this bother you. Windows PowerShell is just another tool to help you get

more done in less time.

In this chapter, I let you have a go at trying out a few Windows PowerShell

scripts to see how easy it is even when doing something relatively complex

such as connecting to Active Directory. More importantly, you get to see that

scripts that do complex things can be just as short and simple as those that

do very mundane things.

DropBooksDropBooks

38 Part I: Getting a Bird’s-Eye View of PowerShell 2

Getting a Taste of Windows PowerShell
In keeping with the tradition of understanding any new programming or

scripting language, I want to get started with showing you how to display

something on the screen. More specifically, I want you to make PowerShell

(PSH) write Hello World! on the screen. Lucky for you, it doesn’t take

much effort — all you need to do is run this line:

Write-Output “Hello World!”

 If you read through the list of predefined aliases by running the Get-Alias

command (I cover aliases in Chapter 2), you might notice that the Write-
Output command is aliased as echo for compatibility with the old Windows

command shell, so the preceding command is equivalent to this:

echo “Hello World!”

While displaying Hello World! on the screen seems very trivial, ultimately

displaying anything on the screen is the most fundamental thing you need

to know. After all, no matter how complicated your script is, at some point

you’ll need to display something on the screen to inform the user about

something such as the results of the script or status messages.

 Although Write-Output is what echo is aliased to, if you want to output to

the screen you can just use Write-Host because it has the added ability to

output the text in a color of your choice.

Input and output are, after all, the two most critical things when it comes

to computers, so now that you know how to display something on the

screen, how can you obtain user input? Well, there’s a lot of different ways

PSH commands can receive input. If it’s a script, you can use command line

parameters. You can pass the output of one command as input for another

command. You can also take input from the command line, as shown here:

$name = Read-Host “What’s your name?”
Write-Host (“Hello “ + $name)

In this example, you use the Read-Host command to prompt the user with

the question What’s your name? The user must then enter something at the

command line in response to this question and then press Enter. The next line

outputs Hello followed by the text you entered, as shown in Figure 3-1.

DropBooksDropBooks

39 Chapter 3: A Pinch of Shell, a Pound of Power

Figure 3-1:
A Windows
PowerShell
input/output

example.

Creating Your First Script
You can create PSH scripts using any text editor, such as Notepad or Graphical

PowerShell. When saving the script, give it a .ps1 file extension so PSH knows

it’s a script and not some random text file. This file extension is used in

Windows PowerShell 1.0 and hasn’t changed in Windows PowerShell 2 since,

for all intents and purposes, PSH 2 can run PSH 1.0 scripts with no changes to

either the code or the file names.

 The file extension is the same for both versions of Windows PowerShell. So, if you

need to prevent someone who has only PSH 1.0 from accidentally running

your PSH 2–specific script, just add #REQUIRES Version 2 at the top of the

script, and you’re golden!

DropBooksDropBooks

40 Part I: Getting a Bird’s-Eye View of PowerShell 2

The script we’re going to start with is a modification of the DIR command

and is shown in Listing 3-1.

 1. It reads some command line parameter which should specify the path to

a folder on your system.

 2. It lists the contents of the folder just like DIR, except that you’re going to

display a color-coded output using green text for files and yellow text for

directories.

Listing 3-1: Color-Coded Directory Listing
if ($args.count -ne 1) {
 Write-Host “Missing Parameter!” -foregroundcolor “Red”
 exit
}

$folderPath = $args[0]

Write-Host (“Directory listing of “ + $folderpath)

Process each item in the directory
foreach ($i in get-childitem $folderpath) {
 if ($i.mode.substring(0,1) -eq “d”) {
 Write-Host $i.name -foregroundcolor “Yellow”
 } else {
 Write-Host $i.name -foregroundcolor “Green”
 }
}

To create your first script, follow these steps:

 1. Open Notepad or the Graphical PowerShell and enter the code from

Listing 3-1.

 You can download and use the code listings from the book’s Web site

(www.dummies.com/go/powershell2fd) instead of having to slog

away at typing everything manually.

 2. Now save this on your system somewhere as mydir.ps1.

 If you’re using Notepad, make sure you change the Save As type to All

Files before saving; otherwise, it will automatically append a .txt exten-

sion to your filename.

 3. Now in your PSH window, run:

c:\scripts\mydir.ps1 C:\

 This command lists the contents of the root of the C: drive using your

newly created script. You see all your filenames displayed in white text,

whereas all folder names show up in yellow text.

DropBooksDropBooks

41 Chapter 3: A Pinch of Shell, a Pound of Power

 I’m using C:\scripts in this example, but you can change this path to

wherever you saved your script.

 If your script is in a path that contains one or more spaces, such as C:\
Documents and Settings\Administrator\Desktop, in order to run it

you have to prefix it with an ampersand and then enclose the it in single

quotes, such as &’C:\Documents and Settings\Administrator\
Desktop\mydir.ps1’.

If you’re already in the directory where you saved your script and you try

running it by entering just the script name (such as mydir.ps1 C:\), PSH

complains saying that it isn’t a recognized Cmdlet (the official term used

when talking about PSH commands), function, program, or script file. This

little complaint is another safety mechanism built into PSH. The current

folder isn’t automatically added to the search path when you’re entering

commands. This setup prevents malicious individuals from placing com-

mands or scripts into your folders with the same name as common com-

mands in hopes that you’ll accidentally run their version instead.

 To run a command that’s in the directory you’re currently in, you have to

prefix it with .\ (period followed by backslash), like this:

.\mydir.ps1 C:\

 If you didn’t change your execution policy to at least RemoteSigned (see

Chapter 2) to get your profile script working, Windows PowerShell prob-

ably won’t let you run this script. The command you’ll need to run is Set-
ExecutionPolicy RemoteSigned if you want to allow all local scripts to

execute without requiring a signature.

Breaking Down Your First Script
Are you about ready to have a breakdown? Good, because I certainly am. I’m

going to take a moment now to break down the script from the previous sec-

tion and elaborate on how each of the different parts work. The first part of

the code deals with handling command line arguments:

if ($args.count -ne 1) {
 Write-Host “Missing Parameter!” -foregroundcolor “Red”
 exit
}

$folderPath = $args[0]

DropBooksDropBooks

42 Part I: Getting a Bird’s-Eye View of PowerShell 2

The first line checks to see whether the number of command line arguments

is not equal to 1 because you need to have the path of the folder speci-

fied as the first argument (otherwise, you can’t do anything). If there isn’t

exactly one argument, PSH outputs the Missing Parameter! message on

the screen in red and then exits. If there is exactly one argument, PSH takes

the argument and stores it in the $folderPath variable. It then displays

Directory listing of followed by the name of the folder as a heading for

the rest of the output:

Process each item in the directory
foreach ($i in get-childitem $folderpath) {
 if ($i.mode.substring(0,1) -eq “d”) {
 Write-Host $i.name -foregroundcolor “Yellow”
 } else {
 Write-Host $i.name -foregroundcolor “Green”
 }
}

This section of code is a loop (a repeating section of code), and if you haven’t

done any programming before, it might seem a bit confusing. Don’t worry; it’s

not as bad as it looks. The first line (the line starting with #), is a comment,
which is a line in the script that Windows PowerShell ignores but is useful for

someone reading the code.

 If you start a line with the # character, you’re telling Windows PowerShell that

this line is a comment that it can ignore. Programmers use comments to

explain what they’re doing so it’s easier to understand what’s going on. It’s

always a good idea to leave comments in your script for yourself and for

anyone else who might take a look at the script later. You can also add a #

character at the beginning of a line of code to prevent it from being executed.

This is called commenting out a section of code and it’s something you might

do if you’re troubleshooting your script and need to prevent a few lines from

running without having to delete that part of the code first.

The next line, which begins with foreach, establishes the loop. It’s saying

“for each of objects in the parentheses, perform the action that’s defined

within the curly braces.” That stuff in the parentheses is sometimes called

the condition for the loop, and in this case contains all the objects returned

from running Get-ChildItem against the given folder path.

The Get-ChildItem command grabs a list of items in the specified path.

In this case, it’s the path the user of the script provides as a command line

parameter. Every iteration of the loop brings back exactly one item, which it

stores temporarily in the $i variable. Inside the loop it uses $i to refer to the

single object returned by this particular iteration of the loop.

DropBooksDropBooks

43 Chapter 3: A Pinch of Shell, a Pound of Power

Each item in a folder contains a set of properties such as its Name, Length

(size), LastWriteTime, and Mode. Mode refers to the various attributes of

that item, such as directory (d), archive (a), read-only (r), hidden (h), and

system (s). When you retrieve the value of the Mode property, it’s returned

as a sequence of five characters. Each attribute is given its specific spot

within this sequence (darhs), and any attribute that isn’t set is instead

replaced with a dash. For example, a read-only directory would have a Mode

value of d-r--, whereas a file that has the archive, hidden, and system attri-

butes set would return -a-hs.

So now you know that if you query the mode property and the item is a direc-

tory, the first character in this value is d. And that’s exactly what you do in

your first script; you take the first character in the mode property and check

to see if it’s d. If it is, then the object is a directory, and you use the Write-
Host command to display the name using yellow as the foreground color;

otherwise, the object is just a file and you use green as the foreground color.

I’ll leave the discussion about loops at that for now. I go over them in much

greater detail in Chapter 6.

Sneaking a Peek at Complex Scripts
Occasionally I like to read fictional books, but I’m not a very patient man

so sometimes I sneak to the end to find out what’s in store. I don’t see it as

a spoiler — rather, it makes me more curious, and I want to read more and

find out how the story ended up that way. Since the preceding section gives

you a taste of an easy script, I thought it might be worthwhile to see Windows

PowerShell do something a little more exciting, a bit more difficult, and hopefully

a lot more useful. I certainly don’t expect you to easily follow along this example,

but I do hope that just like getting a peek of the end of a novel, you too will get

excited about understanding how all this came to be. Don’t worry; the rest of this

book will cover all the details for you.

This script is going to be a bit more real-world and requires that you

have an Active Directory domain to connect to. I’m also assuming you

have some knowledge about Active Directory and Windows Management

Instrumentation (WMI). This script queries a particular Organizational Unit

(OU) in your Active Directory for a list of computers. It will then use WMI to

query various properties of those computers and output it into table format.

Take a look at the script in Listing 3-2.

DropBooksDropBooks

44 Part I: Getting a Bird’s-Eye View of PowerShell 2

Listing 3-2: Retrieving Computer Information from
Computers Belonging to an Active Directory OU
$ou = [ADSI]”LDAP://ou=test,dc=testlab,dc=local”
$computers = $ou.PSBase.Get_Children()
$arrInfo = @()
foreach($node in $computers) {
 $arrInfo += Get-WmiObject -query “Select `
 Name,Manufacturer,Model, `
 NumberOfProcessors, `
 TotalPhysicalMemory `
 From Win32_ComputerSystem” `
 -computername $node.Name
}
$arrInfo | format-table Name, Manufacturer, `
 Model, NumberOfProcessors, TotalPhysicalMemory

Before I go any further, did you notice something fascinating? Compare this

script with the previous script, which did far less than this one. They’re prac-

tically the same length line-wise. That just shows you how powerful Windows

PowerShell really is. With only a few lines of code, not only am I able to query

objects in Active Directory, but I’m also able to query the object’s properties

through WMI and then output it in a nicely formatted table. I did all this with-

out breaking a sweat or hurting my wrists from too much typing.

As you can see in Figure 3-2, this script lists the name, manufacturer, model,

number of processors, and total amount of physical memory for each com-

puter in the given OU. For now, I’m assuming that every item in the given

OU is a computer. In a real production script, I would put in a lot more error

checking between commands and also create filters for the Active Directory

query because OUs can contain computers and other types of objects such

as users, groups, and contacts.

If you want to see how this script runs on your own system, open your text

editor and type it in (or use the file for this listing on the book’s Web site).

You have to change the LDAP path to and existing OU within your Active

Directory, then save it as complist.ps1. Now run this script and watch the

magic happen.

 You’ll see that some lines end with a backtick (`) character. This means that

the next line is just a continuation of the current line and not a separate com-

mand. This is useful if you have very long commands that you want to break

up into multiple lines rather than have them keep going on and on to the right.

 Don’t confuse the backtick (`) with the single quote (‘). The backtick character

is typically found to the left of the number 1 key on U.S. keyboard (usually

above the tab key).

DropBooksDropBooks

45 Chapter 3: A Pinch of Shell, a Pound of Power

Figure 3-2:
Output from

the Active
Directory/

WMI query
script.

Examining the Nuts and Bolts
of the Complist Script

The script in Listing 3-2 is made up of three parts. The first part connects to

Active Directory and queries a list of computer names in a specific OU. The

next part then queries each computer from that list to retrieve various com-

puter properties using the Win32_ComputerSystem WMI class. Finally, the

last part displays the results neatly on the screen.

Take a look at these two lines of code that make the up the first part:

$ou = [ADSI]”LDAP://ou=test,dc=testlab,dc=local”
$computers = $ou.PSBase.Get_Children()

The first line is the easiest way to establish a connection to Active Directory

using the Active Directory Services Interface (ADSI). You must provide the

correct path to an existing OU or container, or the script will return an error.

The next step uses the PSBase.Get_Children function to return a collection

(group) of objects that represent each item in the OU and store it in a variable

called $computers.

DropBooksDropBooks

46 Part I: Getting a Bird’s-Eye View of PowerShell 2

Now examine the second part of the script:

$arrInfo = @()
foreach($node in $computers) {
 $arrInfo += Get-WmiObject -query “Select `
 Name,Manufacturer,Model, `
 NumberOfProcessors, `
 TotalPhysicalMemory `
 From Win32_ComputerSystem” `
 -computername $node.Name
}

The first thing you do is declare an array called $arrInfo. Don’t know what

an array is? That’s okay — for now, think of an array as a sequential group-

ing of items. (I discuss arrays in more detail in Chapter 11.) The second

line starts a foreach loop where you perform one iteration of the loop for

each item that’s stored in the collection referenced to by the $computers

variable. During each iteration of the loop, the current item is temporarily

referred to as $node.

You then use Get-WmiObject to query the computer’s Win32_Computer
System name space and then add this to the $arrInfo array using the +=

operator. When this loop is done going through all the items in your OU,

$arrInfo will essentially contain a collection of objects that in turn contain

information regarding the various properties you queried through WMI.

Now take a look at the third and final part of the script:

$arrInfo | format-table Name, Manufacturer, `
 Model, NumberOfProcessors, TotalPhysicalMemory

In this last part, you feed the contents of the $arrInfo array into the

Format-Table command, where you select which columns you want to

display and in which order. Format-Table is then responsible for rendering

these objects in a pretty table format (refer to Figure 3-2).

See how simple it is to go through all these steps using Windows PowerShell?

If you’ve ever attempted to do to this in VBScript (or even just read through

a VBScript or Windows shell script code that does something similar), for

example, you’ll notice how those scripts are longer than what you have in

this powerful yet compact PowerShell script.

One of PowerShell’s biggest appeals is that it can cater to people who want

to automate things without having a strong programming background. If you

have a good programming or scripting background, Windows PowerShell

provides some very advanced features that give you much finer control over

how you can implement your solutions.

DropBooksDropBooks

Part II
PowerShell’s

Basic Structure
and Syntax

DropBooksDropBooks

In this part . . .
You didn’t learn to ride a bike or drive a car just by

having someone stick you in one and tell you to go.

Hopefully, someone knowledgeable sat down with you

and showed you the basics, such as where the brakes

were and how to use them before you got going. This part

goes over the really core functionality of Windows

PowerShell that really hasn’t changed much since it was

first created. This stuff’s the very foundation for almost

everything in Windows PowerShell, so if you had to pick

one part in this entire book to skip, this one isn’t it.

DropBooksDropBooks

Chapter 4

Shelling Out Commands
and Scripts

In This Chapter
▶ Understanding Cmdlets

▶ Running your old Windows Shell and Windows Scripting Host scripts in Windows

PowerShell

It’s time for you to come face-to-face with Windows PowerShell commands,

otherwise known as Cmdlets (pronounced command-lets). These com-

mands are built on top of the .NET Framework. They are named in a very spe-

cific verb–noun format to make it obvious what action the Cmdlet is designed

to perform, such as Get-ChildItem to retrieve the children of a specific

object or Set-Alias to set an alias.

If you’ve been a Windows administrator for a while now, you undoubtedly

have a few scripts in your virtual toolbox to make your day-to-day adminis-

trative tasks a bit more automated. Windows PowerShell also allows you to

continue making use of many of these scripts without any modification right

from within the Windows PowerShell environment.

In this chapter, you find out what’s so special about Windows PowerShell

commands that caused Microsoft to conjure up a completely new name for

them. You’ll also find out how to read command syntax and how to get help

if you don’t know what a command does. You get to see how you can run

Windows Shell and Windows Scripting Host scripts right from within the PSH

command shell.

Cmdlets: The Little Commands
That Could!

The first time I ever saw the word Cmdlet was back when I started hearing

about Windows PowerShell (when it was still called Monad). I thought that

DropBooksDropBooks

50 Part II: PowerShell’s Basic Structure and Syntax

it meant something like a pseudo-command. In other words, I thought that

Windows PowerShell was comprised of commands that really weren’t com-

mands but more like little mini-commands — and in fact, in some ways it is.

 For all intents and purposes, Cmdlets are nothing more than Windows

PowerShell commands.

Putting Cmdlets under a microscope
If Cmdlets are simply Windows PowerShell commands, it begs the question

“Why give it a completely different name?” Yes, I guess it’s cute to call com-

mands Cmdlets, but there’s more to this than you might think. Cmdlets are

actually a bit different from the traditional concept of commands, in which

people usually think of compiled console-based executable applications.

Instead, Cmdlets are .NET classes usable only within the context of Windows

PowerShell that implement some kind of action.

 Unless you know a little bit about object-oriented programming (OOP), you

may not be familiar with what the term class means when I say that Cmdlets

are .NET classes. You can think of a class as being the definition or schema of

an object. It describes what the object looks like and how it behaves. In this

case, Cmdlets are defined within Windows PowerShell as classes that imple-

ment their functionality by using .NET code.

 Cmdlets are really .NET classes compiled into Dynamic Link Libraries (DLLs)

that are loaded by Windows PowerShell. They use the same memory space as

the PowerShell process, which is one reason why they are more efficient than

console applications.

A Cmdlet’s action is very specific, usually targeting a particular kind of object.

As a result, the developers of Windows PowerShell set some guidelines regard-

ing how Cmdlets should be named. To ensure that command names are intui-

tive and descriptive, all Cmdlets are given names in the verb–noun format, in

which the verb describes what the Cmdlet does and the noun describes what it

acts on. Here are some examples of Cmdlets:

 ✓ Get-Service

 ✓ Set-Date

 ✓ Remove-Item

 ✓ Write-Host

I’m sure that you can guess from their names what the functions of these

Cmdlets are. Get-Service retrieves information about services on the

DropBooksDropBooks

51 Chapter 4: Shelling Out Commands and Scripts

system. Set-Date lets you set the date on the system (actually, you use it to

set the time as well). Remove-Item deletes an item; what it actually deletes

varies depending on the context on which it is used. Write-Host writes

something to the host (screen).

 Being easy to understand is one of the biggest advantages of this kind of

naming convention. The downside is that commands can get pretty long and

tedious to type, which is why I cover shortcut techniques such as Tab expan-

sion and aliases earlier in this book (Chapter 2, just in case you skipped it).

Checking out existing Cmdlets
You can find well over 200 Cmdlets defined within Windows PowerShell

out of the box. Although the available Cmdlets give you plenty of flexibility

in and of themselves, you can install additional Cmdlets from Microsoft

(and even from other vendors) to provide more application-specific func-

tionality. Microsoft Exchange 2007, for example, comes with the Exchange

Management Shell, which is a set of Cmdlets built on top of Windows Power

Shell to provide enhanced Microsoft Exchange management capabilities.

You can find all the Cmdlets that are at your disposal by running

Get-Command

The default output behavior of this Cmdlet probably doesn’t help you much,

though. The list of Cmdlets is so long that most of them just scroll right past

you, and all you see are the last 40 or so at the end of the list, as shown in

Figure 4-1.

You can use a couple of methods to get around this situation. For starters,

if your window buffer is large enough, you can just scroll up to view all the

commands. Your other alternative is to pass the output of this Cmdlet to

the more command so that you see exactly one screen’s worth of output at

a time; then press the spacebar to go to the next page or press Enter (some-

times referred to as CR, for carriage return) to see one new line at a time. To

pass the output of the Get-Command Cmdlet to the more command, run the

following:

Get-Command | more

 You can pass the output of any Cmdlet to another by using the pipe (|)

character — a process that’s called piping the output to another command.

I cover pipes in greater detail in Chapter 7.

DropBooksDropBooks

52 Part II: PowerShell’s Basic Structure and Syntax

Figure 4-1:
Output of
the Get-

Command
Cmdlet.

You may have seen some of these Cmdlets in previous chapters and prob-

ably can guess what many Cmdlets do just by their names. But how can you

find out more about what these Cmdlets are used for and, even more impor-

tant, how to use them? The definition column to the right of the Cmdlet name

(refer to Figure 4-1) is helpful because it shows some of the syntax, but the

rest is cut off. Enter the Get-Help Cmdlet.

 The Get-Help Cmdlet is your best friend, because if you forget everything

you know about every Cmdlet out there, you’re safe as long as you remember

how Get-Help works. You run Get-Help against a Cmdlet such as Get-
Alias by running

Get-Help Get-Alias

Replace Get-Alias with the Cmdlet name to display the description of

that Cmdlet. The default output of Get-Help shows you the Cmdlet name,

synopsis (short description), syntax, detailed description, related links, and

remarks. Usually, if you’ve used this Cmdlet before, this level of information

is all you need to jog your memory on how to use it.

If you’re looking at a Cmdlet for the first time, you can use two other varia-

tions of Get-Help to get even more information. Continuing with the Get-
Alias example, you can find more information by running one of these

commands:

Get-Help Get-Alias -detailed
Get-Help Get-Alias -full

DropBooksDropBooks

53 Chapter 4: Shelling Out Commands and Scripts

Both these variations provide a much higher level of detail regarding

the Cmdlet in question. The -detailed switch provides more informa-

tion, whereas the -full switch provides more technical information. For

many Cmdlets, the output of Get-Help in conjunction with either of these

switches results in the same output. This output not only gives you more

information about the Cmdlet (such as detailed explanations of all the param-

eters it supports), but also gives you many examples to draw from.

Making Cmdlets understand you
When you use Get-Help to view a Cmdlet’s information, you see the syntax

for using that specific Cmdlet. A Cmdlet sometimes takes a different syntax

depending on the context, however, and as a result, the parameters you can

or must specify change too. I find that getting things into my head works best

when I’m actually doing something, so I want you to use the Get-Service

Cmdlet to get familiar with interpreting syntax notation. Enter the following:

Get-Help Get-Service

Running Get-Help on the Get-Service Cmdlet gives you the output shown

in Figure 4-2. Notice that the synopsis tells you that this Cmdlet gets the ser-

vices on a local or remote computer. The detailed description halfway down

the screen expands on this synopsis to let you know that you can also use

this Cmdlet to reference a specific service. From that, you gather that this

Cmdlet is used to retrieve information about Windows services.

Figure 4-2:
Get-Help

output for
the Get-
Service
Cmdlet.

DropBooksDropBooks

54 Part II: PowerShell’s Basic Structure and Syntax

In the traditional Windows command shell, you normally rely on Windows

Resource Kit commands such as SC.EXE to get this kind of information. In

Windows PowerShell, this feature is built right in. You should also note that

the Related Links section in Figure 4-2 lists other Cmdlets that are useful in

this context. Not surprisingly, these are Cmdlets to stop, start, suspend, and

resume services, as well as one to create a new service and to set various

properties of a service. In this one screen, Get-Help gives you a wealth of

information. The next step is actually using this command.

When you look at the Syntax section of the Get-Help output, you notice

three different ways to use Get-Service, indicated by the three different

syntaxes listed. Focus on the first syntax for now:

Get-Service [[-ComputerName] <string[]>] [-DependentServices] [-Include
<string[]>] [-Exclude <string[]>] [-Name <string[]>]
[-ServicesDependedOn][<CommonParameters>]

The names of the parameters typically start with a hyphen (-) so that

the Cmdlet knows where a particular parameter starts and where it ends.

Parameters in square brackets [] are optional parameters, whereas those in

angle brackets <> are required. Then, of course, you see combinations such

as [<CommonParameters>]. Is this parameter optional or required?

You have to look at which element encloses the other. In this case, the

square brackets come first, which means that the parameter is optional.

The angle brackets inside the square brackets mean that the parameter is

required, but in this case it’s required only in conjunction with certain other

specified parameters. To make matters more confusing, you also see those

square-bracket pairs after the word string[]. String is just a technical word

for text, and the square brackets after string mean that you can enter one

or more strings.

Also, some parameter names are required, whereas others aren’t. Take a look

at the -Name parameters versus the -ComputerName parameter, and notice

the extra set of square brackets enclosing -Name. This extra set of square

brackets means that you have the option to leave off -Name when specifying

service names. This option usually applies only to parameters that come first

in the list. Run these two commands, for example, and notice that they are

equivalent:

Get-Service -Name eventlog,spooler,wuauserv -ComputerName PC1
Get-Service eventlog,spooler,wuauserv -Computername PC1

Because all the service names show up at the beginning of the parameter list,

Windows PowerShell can infer that you mean for that list to apply to

DropBooksDropBooks

55 Chapter 4: Shelling Out Commands and Scripts

the -Name parameter. This is why -Name is enclosed in square brackets: to

indicate that you can leave it out, just as I did in the previous example.

 Although you can save some time by omitting optional parameter names such

as -Name for the Get-Service Cmdlet, it’s good practice to specify them

anyway so that your intentions for those parameters aren’t ambiguous.

One Shell to Rule Them All
Whenever a new product or technology is released, there’s usually a period

in the beginning when the adoption rate of the technology is slow. I usually

attribute this slowness to people who aren’t willing to let go of their old ways

and/or aren’t taking a good-enough look at the new stuff to appreciate what’s

been done. In the case of Windows PowerShell, I think that some users (and

by users, I mean Windows administrators) have a notion that using it will

force them to switch back and forth between PSH and the Windows com-

mand prompt to use older scripts or commands.

This is far from the truth. Windows PowerShell is actually smart enough to

let you run all your traditional Windows Shell scripts and batch files, as well

as scripts based on Windows Scripting Host right from within the Windows

PowerShell console. (I cover WSH in more detail later in this chapter.)

Windows Shell scripts
Windows Shell scripts and batch files have existed forever. I’m sure that you

already have a whole slew of them sitting all over your hard drive. People

who are looking at Windows PowerShell for the first time, though, and are

starting to understand Cmdlets and aliases sometimes think that Windows

PowerShell is no longer capable of running Windows Shell scripts.

If you recall, most (if not all) of the built-in commands for the traditional com-

mand prompt are aliased in Windows PowerShell to a Cmdlet, such as DIR

being aliased to Get-ChildItem and Echo being aliased to Write-Output.

If you run DIR /W at the Windows PowerShell prompt, it won’t work because

the /W switch isn’t valid for Get-ChildItem, even though it’s valid for the

real DIR command. Given that information, it’s easy to see why people don’t

think batch files will work in Windows PowerShell: Windows Shell scripts that

rely on these commands won’t work. Or will they?

DropBooksDropBooks

56 Part II: PowerShell’s Basic Structure and Syntax

Open Notepad, enter the following Windows Shell script, and save it as

test.cmd:

@ECHO OFF
ECHO My Old Windows Shell Script
Set X=0
for /f “tokens=*” %%i in (‘DIR /B C:\’) do call :output “%%i”
ECHO Script Complete!
goto :EOF

:output
Set name=%1
Set /A X=X+1
echo %X% - %name%
goto :EOF

I don’t know how well versed you are in Windows Shell, but basically, this

script takes a list of file and folder names at the root of C:\ and then dis-

plays it onscreen with a prefix. This prefix is a sequential number starting

from 1 followed by a space, a dash, and then another space. Knowing how

this Windows Shell script works really isn’t important, but I want to show

you how it behaves in the traditional command prompt and in Windows

PowerShell.

Now that you have the test.cmd script saved somewhere (such as C:\
scripts), open a Windows command prompt (cmd.exe) and then execute

this script by running

C:\scripts\test.cmd

Again, change the path to wherever you saved test.cmd, and enclose it in

double quotes if the path contains a space. Figure 4-3 shows the Windows

command-prompt output.

Figure 4-3:
Output of

test.cmd in
a Windows

command
prompt.

DropBooksDropBooks

57 Chapter 4: Shelling Out Commands and Scripts

Now open Windows PowerShell, type the same command (C:\scripts\
test.cmd), and press Enter. Take a look at the output in Figure 4-4.

Figure 4-4:
Output of

test.cmd in
a Windows
PowerShell

window.

Do you notice any differences (besides the different-color backgrounds)?

Hint: There are none!

Going back to the source code for test.cmd, notice the call to DIR /B C:\

that’s used to return the list of names of files and folders at the root of C:\.

Go back to your Windows command prompt, and run DIR /B C:\. The com-

mand returns the list of file and folder names as expected, right? Now switch

over to your Windows PowerShell window, and run the same command.

Windows PowerShell spits out the following error:

Get-ChildItem : Cannot find path ‘C:\B’ because it does not exist.
At line:1 char:4
+ DIR <<<< /B C:\

That’s strange! If the command doesn’t run in Windows PowerShell, how is it

that the Windows Shell script works? I’m not going to blurt out the answer.

Instead, I want you to see for yourself. Close out of any Windows command

prompts you have open. Open Windows Task Manager (just right-click the

taskbar and choose Task Manager); then go to the Processes tab and click

Image Name to sort the list of processes alphabetically. Make sure that no

cmd.exe processes are running.

DropBooksDropBooks

58 Part II: PowerShell’s Basic Structure and Syntax

Open test.cmd in Notepad again, and replace the ECHO Script
Complete! line with the word PAUSE so that the script looks like this:

@ECHO OFF
ECHO My Old Windows Shell Script
Set X=0
for /f “tokens=*” %%i in (‘DIR /B C:\’) do call :output “%%i”
PAUSE
goto :EOF

:output
Set name=%1
Set /A X=X+1
echo %X% - %name%
goto :EOF

Save the changes, and rerun test.cmd. This time, the script stops with the

prompt Press any key to continue . . . , due to the newly added

PAUSE statement within the Windows Shell script. Don’t do anything inside

the PSH window, and go back to your Task Manager’s Processes tab. Notice

something interesting? Yes, a new cmd.exe process is running, as shown in

Figure 4-5.

Go back to the Windows PowerShell window, and press any key to continue.

Take a look at Task Manager again. The cmd.exe process is gone. Do you

have any idea now what’s going on?

Figure 4-5:
Cmd.exe
process

shown while
running a
Windows

Shell script
in Windows
PowerShell.

DropBooksDropBooks

59 Chapter 4: Shelling Out Commands and Scripts

Well, it turns out that Windows PowerShell is performing some magic in the

background. It spawns (starts) a new cmd.exe process, which is the old

Windows command prompt, in the background and executes the Windows

Shell script in there. Windows PowerShell acts as a host, redirecting any

input to or output from this hidden command prompt to the Windows

PowerShell display, and what you’re left with is the illusion that Windows

PowerShell did all the work for you.

Yes, I know that Windows PowerShell is really faking it and running your

Windows Shell scripts and batch files in a hidden Windows command

prompt, but here’s the cool part: You can still run your Windows Shell scripts

as you always have for years without ever leaving Windows PowerShell. Now

you can just keep working in your PSH console, running your old scripts the

way you always have, and then, when you feel like it, using some Cmdlets for

other things. This practice is a great way to get yourself started using PSH

without feeling by having to switch between different command shells.

Windows Scripting Host
Windows Shell scripts are great because they’re easy to put together, but

you’re limited to the built-in commands and any other command line applica-

tions you can get your hands on. Usually, when you’re creating more power-

ful scripts that do things like manipulate databases or Active Directory, you

use Windows Scripting Host (WSH), because you can use VBScript or JScript

to interact with some of the rich interfaces that WSH exposes.

These scripts are saved in files with names ending in a .vbs extension

for VBScript source files and .js for JScript source files, and are run with

WScript.exe or CScript.exe. Examine this very simple WSH script writ-

ten in VBScript:

WScript.Echo “Starting WSH Test Script...”
For i = 1 to 5
 WScript.Echo i
End
WScript.Echo “WSH Test Script Complete!”

Even if you’ve never written any VBScript before, I’m sure you can guess that

this script displays a count from 1 to 5 onscreen, preceded and followed by

some other miscellaneous text. Type this script in Notepad, save it as C:\
scripts\samplewsh.vbs, and run it in Windows PowerShell by typing C:\
scripts\samplewsh.vbs at the PSH prompt and pressing Enter.

DropBooksDropBooks

60 Part II: PowerShell’s Basic Structure and Syntax

The output of this script depends on the default host you’ve set for WSH.

WSH supports two hosts: WScript.exe and CScript.exe. These two

scripting hosts aren’t too different; the main difference involves the way they

display output. When you use Cscript.exe, it uses a command shell to dis-

play output, just as a regular Windows Shell script does. WScript.exe, on

the other hand, is a graphical host and displays the output in dialog boxes.

Note: WScript opens a dialog box for every WScript.Echo statement in your

script, and you must acknowledge the dialog that pops up by clicking the OK

button before the script continues.

 You can change the default host in Windows PowerShell just as you do in a

command prompt. To change the default host to cscript, run CSCRIPT //H:
CSCRIPT. To change it back to wscript, run WSCRIPT //H:WSCRIPT.

This behavior is no different from running WSH scripts from a command

prompt, which is exactly what you want. Running any WSH script causes it

to be executed with either Wscript.exe or Cscript.exe and then runs as it nor-

mally would. Again, this doesn’t change the way you work with WSH scripts,

so you can continue using your old WSH scripts (or any new ones you want

to create) just as you would before. You no longer have an excuse to stay

away from Windows PowerShell.

DropBooksDropBooks

Chapter 5

When Dollars Turn into Variables
In This Chapter
▶ Saying hello to variables

▶ Understanding data types

▶ Using constant and read-only variables

▶ Finding out about automatic variables

▶ Working with objects through variables

Variables are one of the key building blocks of any scripting and program-

ming language. Without them, you wouldn’t be able to store values,

easily manipulate objects, or use Windows PowerShell for anything more

than simple tasks.

For some reason, every time I think of variables, I’m taken back to the dark

days of high school algebra. Don’t get me wrong; I actually ended up doing

quite well in algebra, but in the beginning I had an unusually hard time get-

ting the idea that some letter such as x could represent some seemingly

arbitrary value. Once I finally grasped this enlightening idea, the rest of my

mathematical learning experience was smooth sailing. (Okay, I admit it; cal-

culus did throw me a curve ball, but I got through it!)

Variables in Windows PowerShell are just like variables in other scripting and

programming languages in that they are names of things that represent some

value, just as the almighty x in algebra always represents something else.

Without variables, it would be difficult to make any useful scripts because

you wouldn’t be able to store any state information or preserve any values.

In short, you wouldn’t have any ability to know what happened in any other

part of the script. In this chapter, I discuss what variables are as well as how

they’re represented and used in Windows PowerShell.

DropBooksDropBooks

62 Part II: PowerShell’s Basic Structure and Syntax

Discovering Variables:
They Vary Very Much

Variables are names of things that represent some value or object. In

Windows PowerShell, all variable names are prefixed with the dollar sign ($).

The variable names themselves can contain a mix of letters, numbers, and

symbols, including spaces. Although you can get away with using symbols

and spaces in variable names, I recommend against it whenever possible — if

you use symbols and spaces, you have to remember to enclose the variable

name in curly braces. Here are some examples of variables:

 ✓ $MyVariable

 ✓ $AVariableWithANumber6

 ✓ ${A variable with spaces}

 ✓ ${A variable with special characters @#%%}

The use of curly braces around the variable name gives you the flexibil-

ity to use almost any name you can come up with. Although you may be

tempted to use variable names with spaces to come up with more descrip-

tive variable names, the use of camel case notation, such as what I did with

$MyVariable, can be just as effective without the extra drama.

Camel case notation is the practice of combining words without spaces by

capitalizing the first letter of each word and using lowercase for subsequent

letters in that word, as in ThisIsAnExampleOfCamelCase. This is espe-

cially useful for variable names because it allows you to use very descriptive

names without having to resort to using spaces and still maintains legibility.

If you’re familiar with other scripting languages, such as Perl, the syntax of

prefixing variable names with dollar signs is very familiar to you. This is the

easiest and most direct method for defining a variable. You can also explicitly

define a variable using the Set-Variable Cmdlet to get additional control

over the advanced properties of the variable, such as its scope and descrip-

tion. You can find out more about this Cmdlet by running the following com-

mand at the PowerShell prompt:

Get-Help Set-Variable

Getting to Know Data Types
You can use variables in Windows PowerShell to store practically any kind

of value, whether it’s a number, character, string, or even an object (more

DropBooksDropBooks

63 Chapter 5: When Dollars Turn into Variables

on this in the section “Working with Objects through Variables,” later in this

chapter). These different kinds of values are known as data types. Variables

that can take on any data type are called variants, and most scripting lan-

guages use them because they offer ease of use and overall flexibility.

Windows PowerShell actually contains a potentially infinite number of data

types. Basic data types cover all of what are called primitive values. Primitive
values are values you would typically expect to store as data and are the

fundamental building blocks of the more complex data types. The basic data

types are

 ✓ Boolean: True or false condition.

 ✓ Byte: An 8-bit unsigned whole number from 0 to 255, such as 32.

 ✓ Char: A 16-bit unsigned whole number from 0 to 65,535. For example,

1,026.

 ✓ Date: A calendar date, such as January 1, 2009.

 ✓ Decimal: A 128-bit decimal value, such as 3.14159265.

 ✓ Double: A double-precision 64-bit floating point number. In effect, this is

another kind of decimal value but has a narrower range of values than a

decimal.

 ✓ Integer: A 32-bit signed whole number from –2,147,483,648 to

2,147,483,647, such as 152 or –1839.

 ✓ Long: A 64-bit signed whole number. This is like an integer but holds

far more values, such as 9,233,372,036,854,775,807.

 ✓ Object: Any kind of object. Sound a little vague? Okay, let me discuss

this a little further.

 The object data type is a bit misleading because it’s really a way of

referring to practically all the other data types that can exist. This is

where that “potentially infinite number of data types” comes into play.

Anyone can create new data types by defining their structure in the form

of a class. A class is simply a definition of this new data type.

 For example, if you want to have some data type that represents an

address, you can create a class called Address with various properties

such as street, city, state, country, zip, and so on. When you actually

create things (well, virtual things in memory) from this class, the thing

created is called an object.

 To sum it all up, an object is an instance of a class, just like the number

2,432 can be an instance of an integer.

 ✓ Short: A 16-bit unsigned whole number. This is like an integer but

holds far fewer values. It can only hold values from –32,768 to 32,767.

DropBooksDropBooks

64 Part II: PowerShell’s Basic Structure and Syntax

 ✓ Single: A single-precision 32-bit floating point number. This is like a

double but holds far fewer values, such as 20.3654.

 ✓ String: A grouping of characters that most people just call text.

 Programmers use the word string a lot, but if you don’t have a program-

ming background you might not know what it means in this context. In

programming terminology, it simply means a consecutive grouping of

characters (what the rest of the world simply calls text). I’m fairly cer-

tain there’s some history around why it’s called a string and who came

up with it, but I just like to think it’s because a consecutive grouping of

characters form a string of characters hence the name string to keep it

short. A string can have zero or more characters. A string with no char-

acters is called an empty string or a null string. In general, you define a

string by enclosing it in double quotes, such as “This is a string”.

Dealing with data types
Data types can be a double-edged sword. Sometimes knowing or being able

to specify exactly what you intended the variable’s contents to be inter-

preted as can make a whole world of difference when you use them. Likewise,

not knowing what the data types are can lead to some very strange effects.

For example, take this very simple Windows PowerShell code snippet:

$a = 1
$b = 2
$c = $a + $b
write-output $c

Even if you’ve never written a single line of code before, you can probably

guess what this script displays. (Here’s a clue . . . the answer is 3!) But what

if 3 isn’t what you intended it to display? Windows PowerShell uses the plus (+)

operator not only to add numbers together, but also to combine strings (in other

words, put two pieces of text together).

In the example, I added two numbers to produce some output. What if I actu-

ally intended to combine the two numbers as two individual characters so

that the output isn’t 3 but rather 12; in other words, the character 1 followed

by the character 2. With the way it’s written in the example, PowerShell tries

to be smart and sees that I’m using the + operator to combine two numbers,

so it logically assumes that I want these values to be added as two numbers.

If you want to combine the previous two as strings, you run the following

code instead:

$a = “1”
$b = “2”
$c = $a + $b
write-output $c

DropBooksDropBooks

65 Chapter 5: When Dollars Turn into Variables

By enclosing the numbers in quotes, you’re telling PowerShell that you want

them treated as string literals rather than numbers. String literals is the term

used for a string that’s explicitly defined by enclosing the text in quotation

marks. When you then combine them with the + operator, PowerShell sees

you want to combine two strings, so it concatenates (joins) the two together,

and in this example, the output is 12.

 If you combine a number and a string, the number is automatically converted

to a string, and the two are combined. Taking the preceding snippet as an

example, you only really need to put one of the values in quotes, and Windows

PowerShell automatically converts the value of the other one when it tries to

combine the two.

Explicitly defining the data type
The example in the preceding section is one way of explicitly telling Windows

PowerShell the data type of the value for ambiguous data types such as num-

bers. Another way of defining a data type is to actually restrict the type a

variable can store. You can even convert a value to another data type.

 Out there in the programming world, the terms data type and type are used

interchangeably. For the this book, I stick with just the term data type. That’s

less confusing for both you and me!

Why in the world would you ever want to limit the type of values that a vari-

able can store or explicitly convert a value to another data type? At first, it

seems like an unnecessary step, especially when PowerShell is more than

capable of figuring out the data type of the value you’re assigning to each

variable, but there are quite a few good reasons to do so:

 ✓ Surprise! Unexpected values: One of the best reasons for limiting the

data type is to safeguard the variable from inadvertently being assigned

a value of an unexpected data type. In a real-world script that can con-

tain hundreds of lines of code, it’s very easy to accidentally assign a

value to a variable that you didn’t intend to. This usually introduces

bugs that are very difficult to track down (the ones that you smack your-

self on the head for later when you find them!).

 ✓ Clarity: Defining the data type eliminates ambiguity for the variable so

that PowerShell performs the operation you actually want it to do rather

than what it thinks you wanted it to do.

 ✓ Improved performance: Defining the data type can help performance a

little bit by allowing PowerShell to make certain optimizations during its

execution because it doesn’t need to guess what the variable might

contain.

DropBooksDropBooks

66 Part II: PowerShell’s Basic Structure and Syntax

Here’s a simple example. Suppose you want to define a variable called

$IntegerOnly that you want to be able to store integers and only integers.

This is done by declaring the variable as an int data type. The following

code snippet shows how you can accomplish this and also what happens if

you try to assign another data type to this variable:

[int]$IntegerOnly = 100
$sum = 2 + $IntegerOnly
write-output $sum
$IntegerOnly = “PowerShell Rules!”
write-output $IntegerOnly + “ Yes, it does!”

When I declare $IntegerOnly, I prefix it with [int], telling PowerShell that

this variable can store only values of data type int. When I output the value

of $sum, it displays the expected value of 102. I then try to assign the value

“PowerShell Rules!” to $IntegerOnly, and the next output statement

should display “PowerShell Rules! Yes, it does!” If you run this code snippet,

you’ll see that doesn’t quite work. Why not?

Windows PowerShell complains about assigning the string “PowerShell
Rules!” to $IntegerOnly. This is because I used the [int] prefix to

instruct Windows PowerShell to allow only integer data types to be stored

in $IntegerOnly. Because Windows PowerShell can’t automatically con-

vert a string to an integer, it throws an error that it can’t convert the value

“PowerShell Rules!” to data type “System.Int32”.

 There’s a really easy way for you to find out the type of value that a variable con-

tains. You can use the GetType() method on the variable, which returns data

type information about the value stored by it. Going back to my earlier example,

to verify that $IntegerOnly is indeed an integer you can run this line:

$IntegerOnly.GetType().Name

 Windows PowerShell is built on top of the .NET Framework, so it isn’t any sur-

prise that variables in PowerShell are objects just as they are in the .NET

Framework. This means that while they’re used for storing and retrieving

values, they also have their own set of properties and methods. GetType() is

one of them and actually returns an object that contains more than just the

data type name. It also includes the following information: IsPublic,

IsSerial, Name, and BaseType. I use the .Name property of the object in

the preceding code because I’m interested only in the data type name, but you

can simply run GetType() on the variable without specifying a property, and

Windows PowerShell retrieves all the information for you.

Also, as I mention earlier in my discussion about the different data types and

objects, the data types that each variable can represent are endless (essen-

tially, any data type that can be defined in .NET). You can simply put the

data type name in the square brackets, such as [System.Text]. Because

DropBooksDropBooks

67 Chapter 5: When Dollars Turn into Variables

it would be insanely tedious to use this full name for the most common data

types, PowerShell defines many data type shortcuts which have much simpler

abbreviated names. Table 5-1, lists some of the more commonly used data

type shortcuts.

Table 5-1 Common Data Type Shortcuts
Data Type
Shortcut

Description Full Type Name

[bool] True or False System.Boolean

[byte] 8-bit unsigned character System.Byte

[char] 16-bit unicode character System.Char

[int] 32-bit signed integer System.Integer

[long] 64-bit signed integer System.Long

[decimal] 128-bit decimal value System.Decimal

[single] 32-bit floating point value
(single precision)

System.Single

[double] 64-bit floating point value
(double precision)

System.Double

[string] A string of unicode
characters

System.String

[array] An array of values or
objects

System.Array

[xml] An XML object System.Xml.
XmlDocument

[wmi] Windows Management
Instrumentation object

System.Management.
ManagementObject

Casting values
When I say I’m “casting values,” I’m not trying to start new Broadway musi-

cal. Casting refers to the process of changing a variable’s data type from one

value to another. For example, what happens when you try to add an integer

to a double? Going back to the simple plus (+) operator, when you try to

combine two or more data types, Windows PowerShell internally performs a

series of steps for you to make it all work:

 1. PowerShell compares the two (or more) data types being combined. If

they match, it simply continues.

DropBooksDropBooks

68 Part II: PowerShell’s Basic Structure and Syntax

 a. If the data types are different, PowerShell attempts to cast (con-

vert) the values to a common data type.

 b. PowerShell attempts to look for a data type that can store the

values being converted without losing its original value and tries to

convert the values to this data type.

 Because PowerShell does this, you don’t lose any data during the

conversion. For example, when combining an integer and a double,

PowerShell converts the integer to a double because the double is

the larger data type. If PowerShell can’t find a data type that can

accommodate all values being combined, it throws an error.

 2. When all the data types are the same, PowerShell combines the values

and returns the resulting value.

 The resulting data type is the data type all the values were converted to.

In the previous section, you define a variable using the square brackets to

assign it a specific data type. Well, you can also use the square brackets to

force Windows PowerShell to cast a data type to a different data type. You’ve

seen how an integer and a string are combined automagically. Naturally, if

you want to combine a double and a string, you can run the following

commands:

$MyString = “ Windows PowerShell “
$MyDouble = 2.0
$outstring = $MyString + $MyDouble
write-output $outstring

Not surprisingly, the output of the preceding commands is Windows
PowerShell 2.0. For fun, I’m going to switch the order by which the two

variables are combined by changing the $outstring line with this

command:

$outstring = $MyDouble + $MyString

When you run this, it gives you an error saying it can’t convert the string to

a data type System.Double. It was just working, so what’s going on here?

Although a double can easily be converted to a string, Windows PowerShell

tries to convert the string to a double because it appears first in the order

of evaluation. It obviously can’t do this because the string doesn’t contain a

valid double value, hence an error is thrown.

You can get around this by explicitly casting the double to a string, so in

effect you’re controlling what data type the variables get converted to rather

than relying on Windows PowerShell to get it right:

$outstring = [string]$MyDouble + $MyString

DropBooksDropBooks

69 Chapter 5: When Dollars Turn into Variables

You cast a value by prefixing the variable name or value with [data_type].

This is the same syntax for defining a variable of a fixed data type, but in this

context you aren’t redefining the variable but rather temporarily converting

it to a new data type. Note: Windows PowerShell tries its best to make this

happen for you, but some things just won’t work. For example, you can’t

try to cast a string that doesn’t contain purely numerical characters into a

number.

You can also cast a variable using the -as operator:

$outstring = ($MyDouble -as [string]) + $MyString

There are some differences between the two methods, but for the most part

they’re interchangeable. You should use the -as operator because it’s the

preferred method for casting values, but if you want you can shorthand it by

simply prefixing the value or variable with the data type as you did earlier.

 Windows PowerShell performs quite a lot of operations when combing values

and more so when you ask it to do data type conversion. It’s all really depen-

dent on the data type of the current value and what you’re converting it to.

If you want to see what happens when you explicitly cast a $MyDouble to a

string before combining with $MyString, you can run this line:

Trace-Command -Name TypeConversion -pshost {[string]$MyDouble + $MyString}

You can see what the debug information looks like in Figure 5-1. This command

is very useful as you can see in great detail every step Windows PowerShell

takes as it combines the two values. You can enclose any expression you want

in the curly braces to have it debugged. You can also use the Trace-Command

Cmdlet to debug other tasks, not just Type Conversion. Read the Type
Conversion help using the Get-Help Cmdlet to find out more.

You should try to get yourself very well acquainted with data types. You

can probably get away with not knowing all the possible data types, but

you at least should be comfortable working with the most common ones.

Specifically, you should understand what values are valid for each data type

and also how they behave when combined with other variable types. For

example, if you combine an integer with a string, the integer gets converted

into a string, and these two are then joined (concatenated) together as

strings to produce a new string. Not understanding this can lead to bugs in

your scripts that can become very difficult to troubleshoot.

DropBooksDropBooks

70 Part II: PowerShell’s Basic Structure and Syntax

Figure 5-1:
Debugging

Type
Conversion.

Constant and Read-Only Variables
Variables are (by virtue of their name) variable, so having a constant or

read-only variable seems like quite an oxymoron. In most scripting and pro-

gramming languages, these are simply called constants or named constants,
but essentially they’re actually special variables that are marked to hold

a constant value set during their initialization, in effect making them read-

only. Windows PowerShell takes it one step further and makes a distinction

between constant and read-only variables.

 There is a distinct difference between a constant variable and a read-only vari-

able even though they’re functionally equivalent. The two are similar in that

constant and read-only variables are both initialized with a value upon decla-

ration and that they maintain that value. The difference is that while you can’t

change a read-only value, you can delete it, whereas constant variables can’t

be change or deleted and exist for the duration of the session (until you close

the PowerShell window).

You must use the Set-Variable Cmdlet in order to set a constant or read-

only variable. You can then use Remove-Variable to delete a read-only

variable. (Remember: You must exit the Windows PowerShell console com-

pletely before a constant variable is released.) The following example shows

DropBooksDropBooks

71 Chapter 5: When Dollars Turn into Variables

how you can define and use constant and read-only variables and also how to

clear a read-only variable:

Set-Variable PI 3.14159265 -option Constant
Set-Variable Author “Steve Seguis” -option ReadOnly
$radius = 3
$area = $PI * $radius * $radius
write-output “Area is: “ + $area
write-output “This book is written by: “ + $Author
Remove-Variable Author -force

You use the -option switch for the Set-Variable Cmdlet to specify if the

variable being defined is constant or read only. The first parameter is the

name of the variable, and the second parameter is the value to assign to it.

Notice how you don’t use the dollar sign character ($) in the variable name.

When using Set-Variable, you simply specify the variable name without

using the dollar sign.

 Dollar signs are only required when defining variables without using the Set-
Variable Cmdlet.

After the constant or read-only variable is defined, you can use them as you

would any other variable except you can’t change its value. The last line in

the example shows how you use the Remove-Variable Cmdlet to get rid

of a read-only variable. Remove-Variable is a Cmdlet used to remove any

variable. If you don’t specify the -force parameter, PowerShell won’t let you

remove a read-only variable and will throw an error if you try.

I prefer using read-only variables rather than constant ones unless it’s a vari-

able I want to ensure remains in effect throughout my entire session. Read-

only variable types are extremely useful in scripts where you want to define

some fixed values (such as the value of PI or a buffer size) and protect them

against accidental changes during the script’s execution. They’re also highly

efficient because Windows PowerShell knows not only what data type the

value is, but also that it won’t change and can allocate and store it in memory

most efficiently.

Understanding Automatic Variables
You can call a variable almost anything you want. The “almost” part of that

sentence is because some variables are special to Windows PowerShell and

are reserved for its own use. They’re called automatic variables because

PowerShell is in charge of managing them for you. Not only are they one less

thing you have to worry about (other than remembering not to try redefin-

ing them yourself), but they’re also extremely useful variables that you’ll

DropBooksDropBooks

72 Part II: PowerShell’s Basic Structure and Syntax

undoubtedly use time and time again. You can see a list of all the automatic

variables and what they contain in Table 5-2.

 I didn’t magically know all these variables. I got this information thanks to

Windows PowerShell’s really cool help command. If you want more informa-

tion about automatic variables, you can run the following command and to get

more details about each of these variables:

get-help about_automatic_variables

Table 5-2 Automatic Variables
Variable Name Description

$$ Contains the last token in the last line received by
the shell.

$? Contains the state of the last operation. True
when successful, false otherwise.

$^ Contains the first token in the last line received by
the shell.

$_ Contains the current object in the pipeline object.

$Args An array of undeclared parameters or values
passed to a function, script, or script block.

$ConsoleFileName Stores the filename of the most recently exported
console file.

$PSCulture Contains the current culture used by the OS.

$Error An array of error objects representing the most
recent errors.

$ExecutionContext Contains an EngineIntristics object that
represents the execution context of the Windows
PowerShell host.

$False This one’s a shocker. It contains the value
FALSE.

$ForEach Contains the enumerator of a foreach-
object loop.

$Home Stores the full path to the user’s home directory.

$Host Current host application for Windows
PowerShell.

$Input Contains the object currently in the pipeline in the
Process block of a function.

DropBooksDropBooks

73 Chapter 5: When Dollars Turn into Variables

Variable Name Description

$LastExitCode Contains the exit code of the last Windows pro-
gram executed.

$MyInvocation Contains information about the current command.
Useful for dynamically retrieving the filename and
path of the current script.

$NestedPromptLevel Stores the current prompt level for nested
prompts. This is a bit advanced, so you may
want to run the get-help about_auto-
matic_variables command for additional
information.

$NULL Contains NULL or empty value.

$PID Contains the process identifier of the Windows
PowerShell process.

$Profile Stores the full path to the Windows PowerShell
user profile for the default shell.

$PSHome Stores the full path to the installation of Windows
PowerShell.

$PSVersionTable A hash table containing details about the version
and build of the current Windows PowerShell
console.

$Pwd Stores the full path to the current directory.

$ShellID Contains the identifier for the current shell.

$True Contains TRUE.

$PSUICulture Stores the name of the UI culture currently in use.

As you can see, quite a few automatic variables get created and are managed

by Windows PowerShell during its execution. Some of them seem pretty use-

less at first glance. For example, you have the two opposing variables, $True

and $False. You might be wondering why you would need to have these

variables when you can simply use the words True and False for the values

like many other scripting languages. The reasoning is because it’s possible to

mistake the string as False with the value True. I’ve got you scratching your

head, haven’t I? In short, it’s because the word False can get confused as a

string, and any non-empty string is True.

DropBooksDropBooks

74 Part II: PowerShell’s Basic Structure and Syntax

 Why would False ever evaluate to True? In scripting languages such as VBScript,

you usually assign True or False values simply by using those words directly.

The danger with the word False is that if it’s somehow misinterpreted as the

string “False” rather than the Boolean meaning of False then it evaluates to

True. This is because any number that is non-zero and any string that is non-

empty is automatically treated as True in a Boolean statement. This is also the

same reason why the automatic variable $NULL is defined. The string NULL is

supposed to mean nothing (undefined/empty) but it can be misinterpreted as

the string “NULL”, which is a non-empty string and would evaluate to True

instead. Yes, it is a bit overkill, but by defining these values as automatic vari-

ables that have permanent and definite meaning, Windows PowerShell can safe-

guard their values so there is no ambiguity in their use.

You can see many of these automatic variables used throughout this book,

and I hope that gives greater meaning to them. If you just take a moment and

go over them, you can see how they can be quite useful. Suppose that, at

some point in the future, a new version of Windows PowerShell is released,

and you write your script to take advantage of those new features and want

to protect it from being executed against unsupported versions. You can

query the values in the $PSVersionTable hash table and get all the infor-

mation you need (from the running Windows PowerShell console all the way

to the build number) and compare it with what you want the environment

you designed the script to run in to be. For example, you can check whether

the version and build number are greater than a certain value.

$Pwd is another great variable to have. If you’ve ever had to write a Windows

shell script (batch file) to find out the current path that you’re in, you know

how convoluted that process is. Typically, you have to run the DIR com-

mand in a loop, parse out the current directory, and assign it to a variable. In

PowerShell, all you need to do is read the $Pwd variable and you’re done! It’s

so easy, it makes me feel guilty using it.

Working with Objects through Variables
Because variables point to objects, you can treat them as the object itself —

which also means you can manipulate and retrieve information from the

referenced objects through the variable name. A simple object to deal with

is a string. A string, which is nothing more than text, has many properties

and methods that are quite interesting. You can retrieve how long the string

is (how many characters it contains). You can find out what character is in

a given position or likewise the position of a certain character within the

string. You can even manipulate the string in different ways, such as return-

ing its value in all upper or all lowercase.

DropBooksDropBooks

75 Chapter 5: When Dollars Turn into Variables

I have a whole chapter dedicated to strings (see Chapter 9), but I use some

quick examples here to give you a feel for how this manipulation takes place

using variables. Consider the following code snippet:

$firstname = “Dan”
$lastname = “Daman”
$fullname = $firstname + “ “ + $lastname
write-output $fullname

As you can see, there’s nothing special going on here, and the output is

clearly going to be Dan Daman. What if you want to display how many char-

acters are in $fullname and you want to display the value of $fullname

so that all characters are in uppercase? Not a problem; it’s really easy. String

objects conveniently have a property called length that dynamically stores

the length of the string at any given time. String objects also have a method

called ToUpper() that returns the string object all in uppercase letters. With

these two pieces of information, you can then solve this problem by running

the following code:

$firstname = “Dan”
$lastname = “Daman”
$fullname = $firstname + “ “ + $lastname
write-output “Length of full name: “ + $fullname.length
write-output “Full name is: “ + $fullname.ToUpper()

Notice how I use length without the parentheses and I use parentheses for

ToUpper. That’s because properties are generally directly accessible values,

whereas ToUpper is a method that internally converts the text to uppercase

before returning its value. The dot between the variable name and the prop-

erty or method name is commonly referred to as the dot operator. It is used

to tell Windows PowerShell that what comes after the period is a property or

method that belongs to the object directly preceding it.

 Objects are instances of classes. You can think of a class as a definition,

schema, or type. It defines what the object will look like. For example, a class

called Dog might be defined as having the properties of color, size, and breed,

and might have methods such as bark, eat, and sleep! Because an object is an

instance of a class, an instance of class Dog might be your neighbor’s dog

Fluffy. (I made this up, so if you’re neighbor has a dog named Fluffy it’s a pure

coincidence — I don’t know your neighbor!) In the virtual world, an object is

the instance of a class that you can actually interact with. Object properties

are directly accessible using the object.property_name syntax. Methods

usually involve the class having to do something rather than just get an inter-

nally stored value, so they’re called like functions. The string’s ToUpper

method doesn’t take any parameters which is why it doesn’t have anything in

the parentheses — but some methods do require parameters. For example, if

DropBooksDropBooks

76 Part II: PowerShell’s Basic Structure and Syntax

you want to replace part of a string with another string, you use the string’s

replace method:

$fullname = “Johnny Goodman”
$newname = $fullname.replace(“Good”,”Bad”)
write-output $newname

This replaces any occurrence of the word “Good” with “Bad” in the string

stored in the variable $fullname. As a result, the output of this snippet is

“Johnny Badman”.

DropBooksDropBooks

Chapter 6

A Bit of Logic to Save the Day
In This Chapter
▶ Understanding logical operators

▶ Using conditional statements to affect script flow

▶ Creating loops to repeat tasks

▶ Avoiding common loop pitfalls

Computers are simply oversized and overpowered calculators.

Sometimes it’s hard to explain this to the average nontechie, but every-

thing we do on our computers — sending and receiving e-mail, browsing

the Web, watching movies — all comes back to numbers! In fact, everything

comes down to two numbers: 0 and 1 (nothing and something).

Take away all the fancy processor architecture, bus speeds, and cool case

lights on a computer, and you have a machine that’s good at adding ones and

zeroes and also at comparing true and false. Everything else that you see,

hear, and interact with on your computer is some sort of representation of

these fundamental units.

In this chapter, you give your Windows PowerShell scripts a little more intel-

ligence by building on these concepts of true and false to direct the flow of

information through your scripts.

A Logic Primer
Logic is built around the premise of true and false values, which are known as

Boolean values. In general, the digit 1 represents true, and the digit 0 repre-

sents false. Windows PowerShell, however, also has automatic variables that

define the values of true and false — namely, $TRUE and $FALSE.

When working with Boolean values, you can use a set of operations to

combine and compare them. These operations are

 ✓ AND: When you compare two values by using the AND operator, the

result is true if, and only if, both values are true.

DropBooksDropBooks

78 Part II: PowerShell’s Basic Structure and Syntax

 ✓ OR: The OR operator, on the other hand, returns true if either value

is true.

 ✓ Exclusive OR (XOR): The Exclusive OR operator returns true if, and

only if, one of the values is true.

 ✓ NOT: Finally, the NOT operator negates the value, so not true is obviously

false, and vice versa.

Take a look at Tables 6-1 through 6-4, which illustrate how Boolean values are

evaluated.

Table 6-1 Boolean AND Operator
Value 1 Value 2 Result

True True True

True False False

False True False

False False False

Table 6-2 Boolean OR Operator
Value 1 Value 2 Result

True True True

True False True

False True True

False False False

Table 6-3 Boolean XOR Operator
Value 1 Value 2 Result

True True False

True False True

False True True

False False False

DropBooksDropBooks

79 Chapter 6: A Bit of Logic to Save the Day

Table 6-4 Boolean NOT Operator
Value Result

True False

False True

A lot of this information may seem to be very basic, but as you start build-

ing complex logic statements to control how your scripts flow, it’s good to

remember how true and false get evaluated when they’re combined, because

often, those evaluations are the places where bugs start to creep in.

This discussion won’t be complete until I show you how all this stuff works in

Windows PowerShell. Take a look at this bit of code:

$a = 1; $b = 2
($a -eq 1) -and ($b -eq 2)
($a -eq 1) -or ($b -eq 2)
($a -eq 1) -xor ($b -eq 2)
-not ($a -eq 1)

In this code, -eq means the equal sign and is one of the operators used to

compare two values. If you work out the logic in your head (or simply run

this code in Windows PowerShell), you see that the results of these com-

mands are the values True, True, False, and False.

 You can use a semicolon (;) to put multiple commands on the same line, as in

$a = 1; $b =2. This behavior applies to scripts, but you can also use a

semicolon on the command line, so typing something like this at the PSH

prompt on one line and then pressing Enter is perfectly valid:

$color = “Blue”; Write-Host (“I like the color” + $color)

Table 6-5 shows the different operators you can use in PSH to compare

values.

Table 6-5 Comparison Operators
Operator Description

-lt Less than

-le Less than or equal to

-gt Greater than
(contined)

DropBooksDropBooks

80 Part II: PowerShell’s Basic Structure and Syntax

Table 6-5 (continued)
Operator Description

-ge Greater than or equal to

-eq Equal to

-ne Not equal to

-is Returns true if the value is a certain data type

-isnot Returns true if the value is not a certain data
type

-like Like (uses wildcard for pattern matching)

-notlike Not like (uses wildcard for pattern searching)

-match A match using regular expressions

-nomatch Not a match using regular expressions

-contains Used to see whether a collection or group of
items contains a given item

-notcontains Used to see whether a collection or group of
items does not contain a given item

 By default, the comparison of values isn’t case sensitive. If you want a case-

sensitive comparison of two values, you prefix the comparison with c.

Likewise, if you want to explicitly make the comparison case insensitive, prefix

it with i, as in this example:

$a = “test”
$b = “Test”
This returns False
$a –ceq $b
This returns True
$a –ieq $b
This behaves the same as –ieq and returns True
$a –eq $b

Branching Using If/Else
The most basic way to control how your script flows is to use if/else state-

ments. This method is very natural because it’s generally how you make

decisions on a day-to-day basis: If I eat this banana chocolate chip muffin

DropBooksDropBooks

81 Chapter 6: A Bit of Logic to Save the Day

for breakfast, I’ll be in a good mood the rest of the day; otherwise (else), my

coworkers will see my dark side. Take a look at this simple if statement, and

try to figure out what it does:

$a = 6
if ($a -gt 5) {Write-Host “Greater than 5!”}

If you guessed that it writes Greater than 5! on the screen, you guessed

correctly. The if statement evaluates the condition in the parentheses. If the

resulting value is true, whatever is inside the curly braces gets executed.

 Any nonzero value also evaluates to true, so sometimes script writers and

programmers use this fact as a shortcut. Look at the following code snippet.

Both if statements are functionally equivalent; the only difference is that the

second version takes advantage of this behavior to simplify the code.

$a = 1
if ($a -ne 0) {Write-Host “Non-zero value entered”}
if ($a) {Write-Host “Non-Zero value entered.”}

Using if by itself is useful if you have a segment of code that you want to

execute only if a certain condition is true — if a file exists or the number of

command line arguments is greater than zero, for example. Sometimes, you

want one segment of code to execute if a condition is true and a different seg-

ment of code to execute if the condition isn’t true. This situation is where the

else statement fits into the picture:

$name = “Steve”
if ($name -eq “Steve”) {
 Write-Host “Hello Steve!”
} else {
 Write-Host “Hello Anonymous!”
}

This example outputs Hello Steve! to the screen, because $name equals

Steve. If you change $name to any other value, the script displays Hello
Anonymous! instead.

A common use for if/else statements is to have your script perform a

sanity check before doing something and then use the else statement to

display an error message. You could have a script check to see whether a file

exists and, if it does, to read the contents and do something fun, or else use

Write-Host or Write-Warning to display a message onscreen to tell the

user that the input file can’t be found.

Now comes a strange-looking statement: elseif. This statement looks like a

hybrid of else and if because it is. Take a look at the two code segments in

DropBooksDropBooks

82 Part II: PowerShell’s Basic Structure and Syntax

Listing 6-1. One of them uses a combination of nested (one statement inside

another) if/else statements, and the other one uses if/elseif/else

combinations.

Listing 6-1: Different Approaches for Performing a
 Nested Value Comparison

Size comparison version 1.0
$size = “M”
if ($size -eq “S”) {
 Write-Host “Small”
} else {
 if ($size -eq “M”) {
 Write-Host “Medium”
 } else {
 if ($size -eq “L”) {
 Write-Host “Large”
 } else {
 if ($size -eq “XL”) {
 Write-Host “Extra Large”
 } else {
 Write-Host “Unknown Size”
 }
 }
 }
}

Size comparison version 2.0
$size = “M”
if ($size -eq “S”) {
 Write-Host “Small”
} elseif ($size -eq “M”) {
 Write-Host “Medium”
} elseif ($size -eq “L”) {
 Write-Host “Large”
} elseif ($size -eq “XL”) {
 Write-Host “Extra Large”
} else {
 Write-Host “Unknown Size”
}

 You can download and use the code listings from the book’s Web site (www.
dummies.com/go/powershell2fd) instead of having type everything

manually.

The first size-comparison code snippet uses nested if/else statements.

Even when I use indentation to help make code a bit more readable to the

DropBooksDropBooks

83 Chapter 6: A Bit of Logic to Save the Day

human eye, the code is still a bit unwieldy, and making a mistake in that sea

of curly braces and parentheses is very easy.

The second version uses the elseif statement to compact the code by

creating a sort of conditional if statement that gets evaluated only if the

previous if statement returns false. This method not only saves me a bit of

typing, but also makes understanding this code snippet a whole lot easier.

Using the Switch Statement
Using if/else and if/elseif/else statements works quite well a majority

of the time. When you have a large set of values, however, and want to com-

pare it with another value to determine what code you want to run next, even

the if/elseif/else method is a bit clunky. The answer is the switch state-

ment, as demonstrated in the following code:

$size = “M”
switch ($size)
{
 “S” {Write-Host “Small”}
 “M” {Write-Host “Medium”}
 “L” {Write-Host “Large”}
 “XL” {Write-Host “Extra Large”}
 default {Write-Host “Unknown Size”}
}

This code snippet is functionally equivalent to the if/elseif/else version,

but notice how much cleaner it looks. It also makes adding extra choices

much easier; you simply add more values that $size can match and then put

whatever code for that match inside the curly braces. The default state-

ment is optional; it’s the catch-all option if no matches exist for any of the

other defined values.

Doing It Over and Over and
Over Again with Loops

Most of the time, I resort to writing a script whenever I feel it’s not worth-

while to perform a repetitive task manually. Sometimes, writing that script

takes as much time as doing the job manually, but a script offers the benefit

of repeatable results. Also, I can reuse that script as is or use it as a frame-

work for a similar task.

DropBooksDropBooks

84 Part II: PowerShell’s Basic Structure and Syntax

The theme that I see most frequently in scripts is repeating a particular task

over and over on different objects. Your script might go through a list of files

in a given folder and rename the files with a different file extension, for exam-

ple. Another script might query Active Directory for a list of users who have

a particular attribute set and then modify that attribute. I’m sure that you can

come up with many examples of tasks that you’d love to automate.

You automate tasks in Windows PowerShell by using loops. A loop is nothing

more than a code block that can be run repeatedly many times depending

on a certain condition you provide it. You can choose among several kinds

of loops — namely, for, foreach, while, do while, and do until loops.

Although they all do the same thing (repeat a code segment over and over),

they have slightly varying uses that make some loops more ideal than others

in different situations.

Looping with For
You typically use the for loop is when you want to loop through some code

a finite number of times. Yes, you can make the code loop forever, but as a

rule of thumb, if you want to run something a known number of times, the

for loop is the ideal choice. The for loop looks like this:

for ($i = 1; $i -le 5; $i++)
{
 Write-Host $i
}

The corresponding output is the digits 1 through 5 displayed onscreen, one

digit per line. The interesting part is inside the parentheses, because that

part controls the loop. If you examine that part of the code closely, you’ll

notice three distinct parts separated by semicolons.

 The code within the curly braces of a loop is called the loop block.

The first part, $i = 1, is the initialization expression, which it sets up the

loop. The expression in the initialization portion gets executed only once: at

the beginning of the loop. In this case, it initializes $i with the value 1.

The next part, $i -le 5, establishes the condition that must return true for

the loop to continue and is evaluated for each iteration of the loop. When this

expression returns false, the loop is done. In this case, the code says that as

long as $i is less than or equal to 5, keep going.

DropBooksDropBooks

85 Chapter 6: A Bit of Logic to Save the Day

The last part, $i++, is a counting section; it also is executed once per iteration

of the loop after each loop-block execution is complete. $i++ means to increase

the value of $i by 1.

Although theoretically, you can put whatever you want in any of these three

sections, the way you see it in the example is the typical way you’d use it.

I use the letter i in the example because the variable used in the for loop

statement is called the iterator. This variable gets this name from its job,

which is to iterate through items.

The code inside the curly braces can be anything you want. Many times, you

use the current value of the iterator, for several reasons such as using it as

an index into an array (which I talk about in Chapter 11) or for combining

with other values to generate some output (perhaps by using it in a calcula-

tion).You can refer to it inside the curly braces as you would any other vari-

able. Just remember that the value of the iterator changes during each pass

of the loop, based on the code you have in the counting section.

Using Foreach to loop through collections
The foreach loop is a cousin of the for loop, in that it too executes for a

finite number of times. Unlike the for loop, however, it doesn’t have to be

told how to increment its values. Instead, you give foreach a collection of

objects and the variable name for the iterator, and foreach automatically

loops through each item in the collection one by one. Have a look at this

code snippet:

foreach ($i in Get-Alias)
{
 Write-Host $i.name
}

The statement in the parentheses, $i in Get-Alias, is where you define

the iterator, which I call $i in this example. Then you tell the iterator what

collection of items to point to — in this example, the return value of Get-
Alias. Get-Alias returns a collection of AliasInfo objects that defines

all the aliases currently defined in the system. For each iteration of the

foreach loop, $i refers to one of these objects; then you can reference

whatever you want from these objects within the body of the loop. In this

case, the loop is just displaying the name of the alias.

 Using foreach loops is always ideal when you’re going through a collection

of objects, due to the ease of establishing and using the loops.

DropBooksDropBooks

86 Part II: PowerShell’s Basic Structure and Syntax

Looping for a While
Sometimes, you want to repeat a process many times and don’t know exactly

how many times it’ll run, but you do know the condition that must exist for

the loop to terminate. This situation is where a while loop comes in handy.

The while loop checks to see whether a particular condition you specify

evaluates to true; then it executes a block of code and continues to repeat

that block of code until the value in the while condition evaluates to false.

Take a look at this code:

$objRandom = New-Object Random
$val = $objRandom.Next(1,10)
while ($val -ne 7)
{
 Write-Host (“You got a “ + $val + “...”)
 $val = $objRandom.Next(1,10)
}
Write-Host “Congratulations, you got a 7!”

This code is a pretty good demonstration of a situation for which a while

loop may be appropriate. This code snippet generates a random number

between 1 and 10 and displays the number it receives until it finally gets a 7.

Because you don’t know how many random numbers might need to be gen-

erated before you get a 7, the while loop allows you to continue searching

until you do.

The first two lines initialize a new Random object and grab the first random

value. The Random object is what allows you to generate random numbers.

You use the Random object’s Next method to specify the lowest and highest

number you want the code to return to generate a random number.

The while loop checks the conditions in the parentheses to determine whether

it should go into the loop. In this example, I’m checking to see whether $val is

not equal to 7. If it isn’t, the code displays the value and then generates a new

random number from 1 to 10. The condition for the while loop is reevaluated,

and the cycle continues. When $val contains the value 7, the code stops loop-

ing and then displays the congratulatory message.

Running a loop at least
once with Do While
A slight variation of the while loop is the do while loop. You can do

exactly the same thing with do while that you can with the while loop, so

why have another version of the same thing? Well, actually, the two loops

have subtle differences. For starters, do while loops evaluate the condition

DropBooksDropBooks

87 Chapter 6: A Bit of Logic to Save the Day

after the code in the loop block has executed. The side effect of this fact is

that the code in your do while loop is guaranteed to run at least once. Take

this code for example:

$objRandom = New-Object Random
do
{
 $val = $objRandom.Next(1,10)
 Write-Host (“You got a “ + $val + “...”)
} while ($val -ne 7)
Write-Host “Congratulations, you got a 7!”

Notice the subtle differences between this do while version and the while

loop version. Because the code block is guaranteed to execute at least once,

you can change the order of the random-number generation and the output,

and eliminate the need to generate a number before the loop. Although these

variations perform the same task, notice that they’re not functionally equiva-

lent. The do while version actually says You got a 7 . . . before it

says Congratulations, you got a 7! , whereas in the while version,

the code jumps straight out of the loop.

Taking a look at Do Until
The do until loop is (not surprisingly) very similar to the do while loop.

The two loops are the same in that they evaluation the condition after the

first iteration of the loop block, but they’re different in how the condition

controls the loop. In a do until loop, when the condition in the parenthe-

ses evaluates to true the loop is done, whereas in a do while loop the

condition in the parentheses must evaluate to false to end the loop. Look at

this example:

$objRandom = New-Object Random
do
{
 $val = $objRandom.Next(1,10)
 Write-Host (“You got a “ + $val + “...”)
} until ($val -eq 7)
Write-Host “Congratulations, you got a 7!”

As you can see, the do until version of the preceding do while code is exactly

the same. The only difference is I changed the condition from $val -ne 7

to $val -eq 7. To make remembering the differences easy, I just think of

do until as being the negative version of do while. You can use both

methods interchangeably, but pay attention to the condition you write for

the loop.

DropBooksDropBooks

88 Part II: PowerShell’s Basic Structure and Syntax

Avoiding loop pitfalls
Loops cause many of the bugs that cause runaway scripts. It’s very easy to

write a loop in which the condition you set to end the loop is a value that’ll

never be attained. Consider this for loop:

for ($i = 1; $i > 0; $i++) {
 Write-Host $i
}

Notice anything wrong? This for loop keeps going and going because it ini-

tializes $i to 1 and keeps incrementing this value, but the condition for the

script is that $i is greater than 0, which is always true.

I have to admit that this example is a bit contrived. Infinite loops occur fre-

quently in variations of the while loop because you usually use a while

loop when you don’t necessarily know how many times the loop block will

need to be executed. Here’s a variation on the random-number check code

that results in an infinite loop:

$objRandom = New-Object Random
$val = $objRandom.Next(1,10)
while ($val -ne 11)
{
 Write-Host (“You got a “ + $val + “...”)
 $val = $objRandom.Next(1,10)
}
Write-Host “Congratulations, you got a 11!”

Again, the code is generating random numbers from 1 through 10, but the

condition I set won’t exit the loop until the value is 11, which is impossible,

so this loop will run forever. This bug is an obvious one, but this kind of stuff

happens if I initially write the script so that I’m looking for 11 and generate

numbers from 1 through 20. The code works, but then I realize that I want

to go only from 1 through 10 and update the random code generation — but

forget to update the loop condition. In very long scripts, this mistake is very

easy to make, especially if you get really lazy and use the search-and-replace

feature in your text editor to make changes.

So whenever you find your scripts going crazy (such as using 100 percent of

CPU), the problem usually is a runaway loop. The first thing you should do is

check the conditions of all your loops; most of the time, you’ll find the culprit

in a loop.

DropBooksDropBooks

Chapter 7

Working on a Pipeline
In This Chapter
▶ Using pipelines to become more efficient

▶ Piping commands together

▶ Working with data and displaying results

If you take a moment to look around you, I’m sure that you can find a lot

of inefficiencies. I see some of the biggest inefficiencies when I’m dealing

with any kind of government agency. I’m not a political kind of person, but

having worked with various government entities throughout my career, I can

say that the bureaucracy that’s designed to create clear lines of responsibil-

ity and authority also typically creates some very inefficient processes as a

side effect.

Typically, getting anything done involves going to one department, filing some

paperwork, getting something back, and then going to another department and

filling out some more paperwork (usually, with the same information) — and

this process can go on and on. Departments and even agencies rarely share

information. Wouldn’t it be nice if you could submit a request somewhere, and

that request would automatically flow through all the relevant departments or

agencies and give you your results at the end? This scenario is a pipe dream

for most of us. Luckily, though, it’s closer to reality in Windows PowerShell.

You don’t have to deal with the same kinds of problems because you can take

advantage of pipelines.

In this chapter, you see how information is passed from one PSH command to

another using pipelines. Unlike pipelines of the past, PSH pipelines are much

more sophisticated and, in my opinion, much more effective. Once you read

this chapter, you’ll see why this new way of passing information between

commands makes so much sense and you’ll never want to do it using any

other method ever again.

DropBooksDropBooks

90 Part II: PowerShell’s Basic Structure and Syntax

Using Pipelines to Streamline
Your Commands

Command line interfaces can suffer the same kinds of inefficiencies that you

see in the real world. If you want to query some information from one com-

puter, that process is straightforward in Windows PowerShell; you just use

Windows Management Instrumentation (WMI) to query that information.

What if you want to query a bunch of computers? Now you somehow have

to provide Windows PowerShell a list of computer names. You may have this

information in a file, or you may have to query Active Directory. Well, query-

ing Active Directory for a list of computers is a completely different com-

mand, so what are you supposed to do? Run the query command, get a list,

and then run a command to query WMI?

The problem can get even more complex as more data sources are required.

The solution is a pipeline.

A pipeline occurs when you take the output of one command and direct it

to the input of another command. When you do, you don’t need to act as

the middleman; rather, you string together the commands you want to work

together to produce a given output. This process is called piping the output

of one command to another.

Pipelines have existed forever. They started showing up in some of the early

Unix shells, and even MS-DOS had support for pipelines. So what’s so great

about Windows PowerShell if this isn’t a new concept? To understand better,

take a look at this regular command line sequence, which you can run in the

traditional Windows command shell:

ipconfig | find “IP Address”

This sequence uses ipconfig to list the IP configurations of all the network

adapters on your system and then pipes that output to the find command,

where it filters the output and displays only the lines that contain the string

“IP Address”. The result is a simple command sequence that gives you all

the IP addresses on your system.

The problem with this method (and, frankly, with all the methods that exist

today) is that it relies on manipulating the text output of the preceding com-

mand. If the output of ipconfig changes so that the string “IP Address”

is changed to “IPv4 Address”, for example, this command sequence won’t

return any results. If you have a lot of scripts that depend on this output, you

have to go back and fix them all.

Windows PowerShell continues to use the same convention of using the pipe

(|) character to denote piping the output of one command to another, but

DropBooksDropBooks

91 Chapter 7: Working on a Pipeline

in the background, the behavior has changed significantly — fortunately, for

the better. The designers of Windows PowerShell realized that relying on

text output is far from being a good idea. A good example of why relying on

text output can cause some complications is if the command output is in a

localized language. If you work in a global IT shop, you have to accommodate

every language variation of this output in each of your scripts.

 Windows PowerShell doesn’t pass text between commands; it passes objects.

This arrangement is significant because the receiving command can access

the various attributes of the object directly, rather than trying to parse out

strings to interpret the data. This point may seem to be trivial, but it’s not.

Objects have a specific structure that is well defined and easy to access, so

you never have to worry that the text will change on you.

Stringing Commands Together
If you’ve piped commands together in MS-DOS or in the Windows command

prompt, or have even gone as far as writing scripts that take advantage of

piping commands together, you’ll need to change the way you think about

pipes when working in PSH.

Here’s a typical command that works fine in the Windows command prompt:

dir c:\windows\system32 | find “.exe”

The command performs a directory listing of c:\windows\system32 and

then pipes the output to the find command to filter for lines that contain the

string “.exe”. Now try running the same command in Windows PowerShell.

Strangely, it returns an error message, stating that the parameter format isn’t

correct.

If you remember, DIR is just an alias to Get-ChildItem, so you’d probably

try running Get-ChildItem or DIR directly without the pipe to make sure

that it actually returns some information. Just running DIR by itself against

c:\windows\system32 returns a slightly different-looking output from the

regular Windows command prompt, but you do see full filenames. So the

find command should work because it just looks for a particular string in

the given input. What’s going on?

Although Get-ChildItem displays the results in a pretty format onscreen

when you run the command, that format isn’t how the information is trans-

ferred to another command when it’s directed through a pipe. The output

that you see when you run a Cmdlet is just the default representation of the

objects that it returns. To see this concept in action, take a look at these

three commands:

DropBooksDropBooks

92 Part II: PowerShell’s Basic Structure and Syntax

Get-ChildItem c:\windows\system32 | Format-Table
Get-ChildItem c:\windows\system32 | Format-List
Get-ChildItem c:\windows\system32 | Format-Wide

You see the output of these commands in Figure 7-1, Figure 7-2, and Figure 7-3,

respectively.

Figure 7-1:
Piping Get-

ChildItem
through
Format-

Table.

Figure 7-2:
Piping Get-

ChildItem
through

Format-List.

DropBooksDropBooks

93 Chapter 7: Working on a Pipeline

Figure 7-3:
Piping Get-

ChildItem
through
Format-

Wide.

Get-ChildItem continues to return the same data, but the Format-
Table, Format-List, and Format-Wide Cmdlets are changing the way the

data is displayed. The formatting Cmdlets do this without having to parse

the original output of Get-ChildItem (which happens to be the same as

Format-Table). Instead, it takes the collection of objects returned by Get-
ChildItem and just rearranges them for output in the specified format.

The reason why all this fancy stuff works is that data and the presentation of

data are completely separate concepts in Windows PowerShell. All the actual

objects returned by the different Cmdlets are pure data, and Cmdlets don’t

care how this data is presented to the user.

This situation has two significant side effects:

 ✓ It allows Cmdlet authors to focus on the functionality of their Cmdlet

and return the data they want without having to worry about who or

what will use the data.

 ✓ Because Cmdlets return just data, authors can format the data any way

they want without first manipulating the format defined by the original

Cmdlet author.

All this begs the question “If Cmdlets return just data, why is it that when I

run Cmdlets that return data, the output on the screen still looks pretty?” It’s

a fair question, because the author of the Cmdlet really doesn’t care about

the output format and certainly doesn’t write that code in the Cmdlet to

begin with. The answer is a Cmdlet called Out-Default.

DropBooksDropBooks

94 Part II: PowerShell’s Basic Structure and Syntax

Out-Default is in charge of figuring out how to render the output of a given

command if no formatter is specified. Every command that you type in the

PowerShell console is automatically piped to Out-Default in the background.

Then the final output is based on the kind of object stream Out-Default

receives. You can think of a stream as being the flow of data.

Every known object has a view that is registered to it and that defines which

formatter to use. When you run a command interactively in the Windows

PowerShell console, Out-Default automatically redirects the output to

Out-Host, which automatically selects the appropriate output formatter for

you (in the case of Get-ChildItem, Format-Table). Then you can easily

see the result you want in a default view. If you want to change the way that

the output is displayed, you can use one of the available formatters or, if

you’re bold, create your own scripts or Cmdlets to do this job for you.

Getting the Right Output
Usually, the default output of the Cmdlets is enough to give you the informa-

tion you want. Defaults are designed to cover the general use of a given com-

mand but sometimes give too much or too little information. The solution is

to tailor the output to your needs. Consider the Get-Process Cmdlet. By

default, it displays a nice tabular list of running processes as well as informa-

tion such as the number of handles open, the amount of memory being used,

the amount of CPU time spent on it, and the process ID. All this information is

very good. If you want the output to display only the process ID and process

name in a tabular format, however, you can run

Get-Process | Format-Table -property id,name

Here, you give Format-Table the list of object properties you’re interested

in. When Format-Table displays the list of objects returned by Get-
Process, it displays only those properties that you specify. It also respects

the order in which you specify the property names, so if you want to display

the process name before the process ID, you can switch the property names

around like this:

Get-Process | Format-Table -property name,id

Do you want to see something else really cool? Because Cmdlets return

objects (are you sick of me repeating that yet?), you can do other really cool

things to filter the output. If you want to find out which processes have a pro-

cess ID greater than 1000, for example, only want to display only the name

of the process, the amount of CPU time it’s received, and the process ID, you

can do that easily with this pipeline (Figure 7-4 shows the output):

Get-Process | Where-Object {$_.Id -gt 1000} | Format-Table -property Name,CPU,Id

DropBooksDropBooks

95 Chapter 7: Working on a Pipeline

Figure 7-4:
Filtering the

output of the
Get-Process

Cmdlet.

 You use the Where-Object Cmdlet whenever you want to filter the objects

that passed along the pipeline.

The Where-Object Cmdlet takes a script block that defines how the objects

should be filtered. The block is enclosed in curly braces. If you examine the

script block I use to filter for process IDs greater than 1000, you see some-

thing new: the $_ symbol. The $_ symbol is an automatic variable (I talk

about variables in Chapter 5) that refers to the current object in the pipe-

line. In plain English, {$_.id -gt 1000} means that for every object the

Where-Object Cmdlet receives from the pipeline, Where-Object takes the

Id property of the object and checks to see whether it’s greater than 1000.

Only those objects that meet this criterion get passed along the pipeline to

the next command.

 Where-Object is aliased as where, so don’t be surprised if you come across

pipelines that use just the word where to filter objects.

I use Format-Table in the preceding examples, but you can use the

Select-Object Cmdlet as a more generic method of specifying the object

properties you want to retrieve in a pipeline. Another useful Cmdlet for work-

ing with pipelines is Sort-Object, which sorts the incoming objects. You

can sort by one or more object properties; Sort-Object first sorts by the

first property you specify, and then by the next property, and so on. You can

also tell it to sort in ascending or descending order.

Here’s a slight variation on the Get-Process example. This time, I’m using

Select-Object to specify the fields I want and Sort-Object to sort the

objects first by CPU time and then by Id:

Get-Process | Where-Object {$_.Id -gt 1000} | Select-Object Name,CPU,ID | Sort-
Object CPU,Id

I hope that you already see how powerful the simple change of returning

objects rather than text really is. Doing something like this in Windows shell

scripting or even in Windows Scripting Host (WSH) would take many lines of

code, but here, everything happens on one line.

DropBooksDropBooks

96 Part II: PowerShell’s Basic Structure and Syntax

DropBooksDropBooks

Part III
Complex Data

Description and
Sharing

DropBooksDropBooks

In this part . . .

Now that you know the basics, it’s time to shift gears

and start having some real fun. I’m going to build on

some of the concepts I talk about in the previous part, but

now it’s time to bring in slightly more complex concepts.

Chapter 8 addresses working with Windows Management

Instrumentation (WMI) to query information from

Windows. I delve deeper into concepts like manipulating

strings in Chapter 9 and working with numbers in Chapter

10. In Chapter 11 I cover data structures like arrays and

hash tables which will allow you to group data together. I

discuss methods for reading from and writing to plain text

files and even XML or HTML files in Chapter 12. Finally, I

address working with dates in Chapter 13.

DropBooksDropBooks

Chapter 8

Working with Windows
Management Instrumentation

In This Chapter
▶ Understanding Windows Management Instrumentation

▶ Using Windows PowerShell to talk to WMI

▶ Understanding advanced WMI querying using WQL

▶ Using WMI to its full potential

▶ Making use of WMI security features

▶ Being someone else with Impersonation

▶ Taking a look at the new WMI Cmdlets in PSH 2

I’ve been managing Microsoft Windows–based networks for a fairly long

time now, and I still remember how much manual effort it took to perform

even simple systems management tasks before Windows Management

Instrumentation (WMI) came about. I remember during the year leading

up to Y2K, a company I did some work for had to bring in a small army of

technicians just to visit each and every workstation to find out their BIOS

version in order to determine which ones needed to be flashed to become

Y2K-compliant. If WMI was accessible to me back then the way it is today,

I’m certain I’d still have a lot more hair on my head. Those times have come

and gone, and many of the systems management tools today are built to take

advantage of WMI. PowerShell is no exception!

In this chapter, you run some commands that allow you to interact with

Windows through WMI. It’s something that’s very easy to do but packs a big

punch, so once you understand how to talk to Windows through WMI, you’ll

be increasing your effectiveness in controlling Windows exponentially.

DropBooksDropBooks

100 Part III: Complex Data Description and Sharing

Getting Familiar with Windows
Management Instrumentation

Windows Management Instrumentation (WMI) provides a standardized

interface for interacting with a Windows-based system regardless of the

underlying hardware manufacturer and specific Windows version. Prior to

WMI, different hardware vendors might have provided different Application

Programming Interfaces (APIs) that you could have used to write some code

and get this information yourself, but if you happened to have hardware

from different vendors you were forced to learn different APIs. This disparity

applied not only to hardware, but even to the different version of Windows

operating systems. There just wasn’t one cohesive way to access the informa-

tion you needed quickly.

This lack of a unified approach made automating systems tasks (such as que-

rying installed hardware, software, and other operating system properties)

very time consuming — if not nearly impossible. WMI is the answer to all this

because it provides a set of non-proprietary specifications and standards for

interacting with various components of a system.

 WMI is now officially the term used by Microsoft when referring to what was

once called Web-Based Enterprise Management (WBEM) for Windows. WBEM

is a set of standard technologies created and managed by the Distributed

Management Task Force (DMTF). The DMTF is an industry organization that

collaborates with thousands of technology companies worldwide to develop

management standards and integration technology for enterprise and Internet

environments. The DMTF also has a Common Information Model (CIM) that

specifies a common definition of management information relating to systems

and services. WMI is fully compliant with the CIM and WBEM specifications

and continues to maintain that compliance as these standards evolve.

Examining the WMI architecture
WMI isn’t all that complicated, but it does have a few moving parts. At the

bottom of the WMI architecture are the managed objects — the things you

typically interact with, such as physical devices on your systems (your moth-

erboard, memory, cup-holder . . . err . . . DVD-ROM drive); your Windows

Registry; and basically anything that can be accessed using the Windows API.

On top of the managed objects layer are a bunch of WMI providers. You

can think of the WMI providers as pieces of bilingual software capable of

speaking WMI and the native language of whatever managed object they’re

designed to manage. This is your middle man, so to speak, in your transac-

tions with the operating system through WMI.

DropBooksDropBooks

101 Chapter 8: Working with WMI

The actual thing you interact with is the WMI Management Infrastructure,

which is comprised of two components: CIM Object Manager (CIMOM) and

the CIMOM Repository (see Figure 8-1). The CIMOM Repository contains a

list of objects you can use to interact with the system, whereas CIMOM is

in charge of providing you with a standard method for interacting with the

system. CIMOM is the broker for all your WMI transactions.

 WMI is built around classes that create an abstract representation of the man-

aged objects. Instances are the actual objects in memory that you interact

with. For example, you have a Win32_Process class that represents a pro-

cess; each running process is then an instance of the Win32_Process class.

Figure 8-1:
The WMI

architecture.

WMI Providers

Managed Objects

(Devices, Win32, APIs, SNMP, Registry)

Management Applications
(Programs and Scripts)

WMI Management Infrastructure

CIM Object Manager (CIMOM)CIMOM Repository

Poking around in WMI namespaces
Each object that WMI exposes is made available through a specific namespace.

You can think of a namespace as a naming convention that uniquely identifies a

class (the definition of an object). Namespaces also help group related classes

together. Most of the core WMI classes you’ll typically work with are stored

DropBooksDropBooks

102 Part III: Complex Data Description and Sharing

in the root\CIMV2 namespace. However, if you have other applications that

define their own WMI classes, they’ll usually define their own namespace. For

example, if you have Microsoft Exchange installed on the system, you’ll have

a WMI namespace called root\MicrosoftExchangeV2 that you can use to

query various Microsoft Exchange properties. There are similar namespaces

for products like IIS (root\MicrosoftIISv2) and SQL Server (root\
Microsoft\SqlServer).

One way to find out what WMI namespaces are defined in your system is to

open the Windows Management Instrumentation MMC snap-in. You can do

this by following these steps:

 1. Choose Start➪Run.

 2. Enter wmimgmt.msc and press OK.

 This will open up the WMI MMC snap-in.

 3. Right-click WMI Control (Local) and choose Properties.

 This brings up the WMI properties dialog box.

 4. Click the Security tab.

 5. Double-click the Root folder (or click the plus symbol to the left of it)

to see the entire namespace tree (see Figure 8-2).

Figure 8-2:
You can
view the

WMI name-
spaces

available
on the local

host.

DropBooksDropBooks

103 Chapter 8: Working with WMI

Securing WMI
Because WMI gives you the ability to query and, where applicable, even

make changes to managed objects both locally and remotely, security is a big

concern. Fortunately, WMI namespaces have their own set of Access Control

Lists (ACLs) that define which accounts can perform what kind of action on

classes in that namespace.

You set the security using the same WMI MMC snap-in. You simply need to

select the namespace you want and click the Security button (refer to the

previous section). You usually won’t be touching these permissions, but

sometimes you might have to in order to get something to work. For example,

some namespaces don’t allow you to interact with them remotely, so you

have to explicitly allow this. You can allow or deny any of the permissions

listed in Table 8-1.

Table 8-1 WMI Permissions
Permission Description

Execute Methods Allows running of methods provided by WMI classes.

Full Write Full permission to read, write, and even delete all WMI
classes and instances.

Partial Write Write access to static WMI objects.

Provider Write Write access to objects provided by providers.

Enable Account Read access to WMI objects.

Remote Enable Remote access to WMI objects.

Read Security Can view WMI permissions but not change them.

Edit Security Can view and modify WMI permissions.

Making Windows PowerShell
Interact with WMI

Working with WMI using Windows PowerShell is as easy as sipping cool lem-

onade on a hot summer’s day. You need to know only one Cmdlet, and that

is Get-WMIObject. In its simplest form, you need to give Get-WMIObject

only the name of a class, and it gladly spits out information about all the

DropBooksDropBooks

104 Part III: Complex Data Description and Sharing

instances of that class along with any properties it has. To find out informa-

tion about your BIOS, you can run this line:

Get-WMIObject Win32_BIOS

If you want to know some general information about the computer you’re on

(such as the name, manufacturer, and model), run this:

Get-WMIObject Win32_ComputerSystem

These commands query the local host to return this information, as shown in

Figure 8-3.

 WMI allows you to get information remotely as well. You can query the

same BIOS information off a computer called REDLINE by using the Get-
WMIObject Cmdlet’s -computername parameter:

Get-WMIObject Win32_BIOS -computername REDLINE

An easy way to see all the classes available to your disposal is by using Get-
WMIObject to list them out for you. Simply enter this:

Get-WMIObject -list

Figure 8-3:
I got this

output after
running

Get-
WMIObject

against
common

WMI
classes.

DropBooksDropBooks

105 Chapter 8: Working with WMI

Most of the time, you’ll only be dealing with core WMI classes that directly

interact with various Windows or system components. The names of these

WMI classes all start with Win32_, so by taking advantage of pipelines (see

Chapter 7), you can use the following sequence of commands to filter out

only those WMI classes:

Get-WMIObject -list | where {$_.name.startswith(“Win32_”)}

Notice how many classes are available for you to interact with. The reality

though is that while there is practically a WMI class to interact with almost

any imaginable part of Windows, you’ll only typically interact with a subset of

these classes on a regular basis. Table 8-2 lists some of the more commonly

used WMI classes.

Table 8-2 Commonly Used WMI Classes
Class What it Represents

Win32_BIOS Various properties related to the
system BIOS

Win32_ComputerSystem Various properties related to a com-
puter running Windows

Win32_Directory A directory/folder in Windows

Win32_Environment System environment variables

Win32_LogicalDisk Storage devices on a system

Win32_NetworkAdapter A network adapter on a system

Win32_NetworkAdapter
Configuration

The configuration of a network
adapter on a system

Win32_NTLogEvent An event log entry

Win32_OperatingSystem The operating system including things
such as build number and service
pack level

Win32_Printer A printer installed on the system

Win32_PrintJob A print job running on the system

Win32_Process A process running on the system

Win32_Processor A CPU on the system

Win32_QuickFixEngineering Small patches to the operating system
(continued)

DropBooksDropBooks

106 Part III: Complex Data Description and Sharing

Table 8-2 (continued)
Class What it Represents

Win32_Registry The Windows registry

Win32_ScheduledJob A task scheduled on the system

Win32_Service A service installed on the system

Win32_Share A shared resource on the system

Win32_TimeZone The time zone for the system

 You can find out more about a specific WMI class (such as what it represents

and what properties are available to you) by looking them up on the Microsoft

Developer Network (MSDN). You can find a list of all the WMI classes at http://
msdn2.microsoft.com/en-us/library/aa394084(VS.85).aspx.

 The default namespace in Windows is root\CIMV2. In general, you’re not

going to want to change this unless you have a very specific reason because

all the WIN32_ classes fall into this namespace. The Get-WMIObject com-

mands you issued earlier all work because it just so happens that the WMI

classes you queried all belong to root\CIMV2. If you want to query a class

outside of this namespace, you need to explicitly define it using the

-namespace parameter. Here’s an example where you can query the

IISWebService class of root\MicrosoftIISV2 if you have IIS installed:

Get-WMIObject IISWebService -namespace “root\MicrosoftIISV2”

 By explicitly specifying the -namespace parameter, you’ll see all the proper-

ties available to you, not just what it returns by default. This means if you

want to find out all the properties available in the Win32_ComputerSystem

class, you can run this line:

Get-WMIObject Win32_ComputerSystem -namespace “root\CIMV2”

Using SQL Syntax in WMI to Get WQL
Structured Query Language (SQL) is a language for interacting with relational

database management systems (RDBMS), such as Microsoft SQL Server.

So what happens when SQL and WMI collide? The product is WMI Query

Language, more commonly known as WQL. The use of SQL-like syntax to

query WMI is very natural because when you think of WMI, you can loosely

translate it into regular database terminologies.

DropBooksDropBooks

107 Chapter 8: Working with WMI

A relational database consists of data organized into tables. Each table has a

set of columns (fields) and rows (records). For example, in your SQL database

you can have a table called tblUsers that consists of four fields: FirstName,

LastName, Username, and Password. Each row is a record that represents a

different user. Table 8-3 illustrates how this table might look like.

Table 8-3 Sample SQL Database Table — tblUsers
FirstName LastName Username Password

Joseph Bradshaw jbradshaw S3kD2#g

Sean Black sblack J42D@fg3

Nicole Anderson nanderson p!nk35T

In SQL, if you want to query the database, you use the SELECT statement. If

you want to query tblUsers for the FirstName and LastName of a user

with a Username of sblack, you run the following query:

SELECT FirstName,LastName FROM tblUsers WHERE Username = ‘sblack’

You just give the SELECT statement the fields you’re interested in, the table

you want to query, and (optionally) a condition that filters the results. You

can do a whole lot more than this using SQL’s SELECT statement, but I won’t

elaborate on it much more since this isn’t a book about SQL (although, if

you’re interested in SQL you can also pick up SQL For Dummies, 6th Edition,

by Allen Taylor).

Okay, so now that you know everything there is to know about SQL (yea right!),

here’s how it is similar to WMI. Remember your good friend, the Win32_
BIOS class? Instead of thinking of it as a class, think of it as a database

table. The Win32_BIOS class has a bunch of different properties such as

Manufacturer, Name, SerialNumber, and Version. Think of these proper-

ties as fields in your Win32_BIOS table. Because every computer has only

one BIOS, this table has only one record — but still it has a record.

This striking similarity is exactly why the synergy between SQL and WMI is so

natural. Now to put all this together, if you want to find out the manufacturer

and version of your BIOS, all you need to do is run this command:

Get-WMIObject -query “Select Manufacturer,Version From Win32_BIOS”

That’s it! The cool thing is that you’re still using the Get-WMIObject Cmdlet,

which means you can still use all the other parameters such as -computer

to run it against another computer. Note: I didn’t have to add a WHERE clause

in my query, because I wasn’t filtering for anything specific.

DropBooksDropBooks

108 Part III: Complex Data Description and Sharing

Harnessing the Power of WMI
If you haven’t been taking advantage of WMI, you’ve really been missing out.

Because practically everything in Windows is represented by a WMI class,

it opens up a whole world of opportunity to automate almost anything you

want in Windows. Now that you’ve had a look at how querying WMI works

in Window PowerShell, it’s time to look at some real-world scenarios where

WMI becomes really handy.

In this scenario, you get a call from a user stating that one of the applica-

tions she uses doesn’t work. You begin to get other calls about the same

application, so you believe this has to be a server-side issue since their other

network-based applications continue to work fine. You’re not normally the

administrator for this application, but you need to get this resolved quickly.

How can Windows PowerShell and WMI help you?

Normally I do two things in situations like this:

 ✓ I check for any services that are set to automatic startup but are not

currently running — this might point out that a service this application

is dependent on has crashed.

 ✓ I check the application’s event log for any errors.

Not-so-coincidentally, I explain how to do those two things in the following

sections.

Querying service status
To find out which services are set to automatic startup and aren’t running,

run the following command pipeline:

Get-WmiObject Win32_Service | Where-Object {($_.StartMode -eq “Auto”) -and ($_.
State -ne “Running”)} | Select-Object DisplayName,Name,State

This command queries the Win32_Service WMI class for all services on the

system and filters it using the Where-Object Cmdlet for services that have

the StartMode property equal to Auto and the State property not equal

to Running. Because you’re interested only in the name of the service, the

display name, and the state of the service, you then use Select-Object to

select just those properties.

Sometimes this is enough to resolve the problem. If it’s a Web-based appli-

cation and you see that the World Wide Web Publishing service is stopped,

then most likely you just need to start it back up again to get things running.

DropBooksDropBooks

109 Chapter 8: Working with WMI

 You can start a service using the Start-Service Cmdlet. The reason I added

the Name property in addition to the DisplayName property when querying

for stopped services is because you need to specify the Name property of the

service when starting it up. So if you had to start up World Wide Web

Publishing Service (W3SVC), you actually have to run this line:

Start-Service W3SVC

Looking for event log entries
The other troubleshooting step you can take is to comb the event logs for

any possible errors. The Win32_NTLogEvent WMI class gives you access to

all the Windows event log entries, so that’s a good place to start. You can use

the following command pipeline to query the application log for all the Error

events:

Get-WmiObject Win32_NTLogEvent | Where-Object {($_.LogFile -eq “Application”)
-and ($_.Type -eq “Error”)} | Select-Object Category,Computer
Name,EventCode,Description,Message,TimeWritten | Sort-Object
TimeWritten

You just use Get-WmiObject to query all the items in Win32_NTLogEvent

and pipe it to the Where-Object Cmdlet to filter for entries where the

Logfile is equal to Application and the Type is equal to Error. You then

pass these results to Select-Object to specify the fields you’re interested

in and then sort the results by the TimeWritten field.

In reality, it might be faster (or even easier) to just use the Event Viewer to

get this information rather than typing out long command sequences just to

get the same information. In a real-world scenario, you really wouldn’t be put-

ting these commands together on the fly to troubleshoot an issue. The best

way to take advantage of WMI is by creating a toolkit of scripts for common

troubleshooting tasks.

An even more ideal situation is for the application expert or administra-

tor to describe a set of troubleshooting steps to follow if there’s a problem

with the application. More likely than not, you can automate many of these

troubleshooting steps that relate directly with the operating system through

Windows PowerShell WMI scripting.

Changing WMI Authentication Levels
In my brief discussion about WMI early in this chapter, I left out a very impor-

tant aspect of WMI — authentication levels. Authentication levels control

when and how authentication is performed when connecting to a WMI

DropBooksDropBooks

110 Part III: Complex Data Description and Sharing

provider. This is very important because WMI permissions are very distinct,

and in some cases just being an administrator of the computer doesn’t auto-

matically give you access to query a provider.

Microsoft IIS is one of those providers. Due to the added risk associ-

ated with running a Web service, the Microsoft IIS WMI provider (root\
MicrosoftIISv2) requires all data sent between the server and the client

to be authenticated, verified, and encrypted. To find out the major and minor

IIS version numbers of an IIS instance running on a server called web01, you

can run this command sequence:

Get-WMIObject -class iiswebinfo -namespace “root\MicrosoftIISv2” -computer web01
-authentication 6 | Select-Object MajorIISVersionNumber,MinorIISVe
rsionNumber | Format-List

The key portion of this code snippet is in the Get-WMIObject call. In

particular, you now have to explicitly specify the namespace because

MicrosoftIISv2 doesn’t exist in the default root\CIMV2 namespace. The class

you’re interested in is iiswebinfo because this class contains information

related to the IIS version number. If you’re running this command on a com-

puter other than the Web server, you have to specify the Web server’s com-

puter name with the -computer switch to run the query.

The most interesting part is the -authentication parameter. This is new

to Windows PowerShell 2. Without specifying this -authentication param-

eter with the value of 6, Windows PowerShell (well, actually the underlying

WMI provider) returns an Access Denied error message. The value of 6 sets

the authentication level to PacketPrivacy, which authenticates, verifies,

and encrypts data transferred between client and provider.

As you can see in Table 8-4, you can choose from seven authentication levels.

In Windows PowerShell 1.0, you were limited to only the default settings, so

this a nice new feature in Windows PowerShell 2. Well, actually, it’s beyond

nice. Without this added feature, there would be no way you could use

PowerShell to interact with the Microsoft IIS provider using WMI.

Table 8-4 WMI Authentication Levels
Name Description Authentication

Parameter
Value

Default Authentication uses the default
settings.

0

None There is no authentication being used
at all.

1

DropBooksDropBooks

111 Chapter 8: Working with WMI

Name Description Authentication
Parameter
Value

Connect Authentication happens only during
the initial connection between client
and provider.

2

Call Authentication happens at the begin-
ning of each call but subsequent data
isn’t signed or encrypted.

3

Packet Authentication happens against all
data received from the client but
data packets are still not signed or
encrypted.

4

Packet
Integrity

All data transfer is authenticated and
verified. All data packets are signed
but not encrypted.

5

Packet
Privacy

The highest level of authentication:
All data is authenticated, verified, and
encrypted.

6

Pretending to Be Someone
Else Using Impersonation

When you connect to a WMI instance, you can also tell it how it can use your

credentials in order to perform a certain action. You specify the imperson-

ation level with Get-WmiObject using the -ImpersonationLevel param-

eter. You can choose between five different impersonation level values, as

listed in Table 8-5.

Table 8-5 WMI Impersonation Levels
Name Description ImpersonationLevel

Parameter Value

Default Uses the default value of the
remote host.

0

Anonymous Hides your credentials from the
WMI provider.

1

(continued)

DropBooksDropBooks

112 Part III: Complex Data Description and Sharing

Table 8-5 (continued)
Name Description ImpersonationLevel

Parameter Value

Identify Enables WMI objects to query for
your credentials. Default for WMI
pre-version 1.5.

2

Impersonate Enables WMI objects to use your
credentials when running, thereby
impersonating you. This level is
the default for WMI version 1.5
and later.

3

Delegate Lets WMI objects impersonate
you and additionally use your cre-
dentials to access other objects
on other systems.

4

You won’t normally have to specify the impersonation level. However, if you’re

connecting to a WMI provider on a different computer, you might have to set the

impersonation level to 3 (Impersonate), especially if you don’t know the WMI

version of the remote host ahead of time. This is because prior to WMI ver-

sion 1.5, the default impersonation level is Identify, which is good enough for

local WMI queries but insufficient for running remote WMI commands.

You can use the Delegate impersonation level only if all the accounts

involved in the WMI query have been given trusted-for-delegation permissions

in Active Directory. This is a safeguard for using Delegate access because

it allows a remote computer to impersonate you on yet another remote com-

puter. Needless to say, with sufficient privileges and malicious code, this can

potentially be very harmful, so be careful when using the Delegate imper-

sonation level.

Using the New WMI Cmdlets
The authentication parameter of the Get-WMIObject Cmdlet isn’t

the only new WMI feature for Windows PowerShell 2. In fact, three new

Cmdlets specifically dealing with WMI are now available to you. These

newbie Cmdlets are Invoke-WMIMethod, Remove-WMIObject, and Set-
WMIInstance, which I describe in the following sections.

DropBooksDropBooks

113 Chapter 8: Working with WMI

Making things happen
with Invoke-WMIMethod
WMI isn’t all about being able to query properties. You can also use WMI to

take action through different WMI providers by invoking methods defined in

the WMI class. Methods are code blocks that are designed to perform a spe-

cific action. For example, the Win32_Service class has a StartService

and StopService method that you can use to start and stop services. For

example, to stop the World Wide Web Publishing Service (W3SVC), run this

command:

Invoke-WMIMethod -path “Win32_Service.Name=’W3SVC’” -name StopService

You use the -path parameter to specify a specific instance of the Win32_
Service class to run this method on. In this case, you tell it to run against

the Win32_Service instance where the Name property is equal to W3SVC.

The -name parameter gives it the name of the method you want to call.

Some methods require arguments to be specified so that it knows what to

do. A good example of this is the Create method for the Win32_Process

class. The Create method is used to create a new process, but to so it needs

the name of the executable that you want it to run. If you want to use WMI to

start Internet Explorer, you can run this command:

Invoke-WMIMethod -class Win32_Process -name Create -argumentlist “C:\Program
Files\Internet Explorer\iexplore.exe”

Notice how you use the -argumentlist parameter to give the Create

method the argument it needs to perform its task.

WMI classes can define their methods as being instance- or static-based:

 ✓ An instance method relies on a specific instance of a class to act upon.

The StopService method of the Win32_Service class is a good

example of an instance method. You can call StopService only

on a specific service instance. Just telling the Win32_Service to

StopService doesn’t work because it doesn’t know which service

you’re talking about.

 ✓ A static method can be run on a class regardless of instance. The

Create method of the Win32_Process class is a good example of

a static method. You don’t need a specific Win32_Process to call

Create — you’re creating a whole new process anyway, which in

general is not dependent on any other process.

DropBooksDropBooks

114 Part III: Complex Data Description and Sharing

Deleting objects using Remove-WmiObject
You can use the Remove-WmiObject to send a WMI object to its virtual

grave. Of course, this works only on objects that you can actually delete —

for instance, you can’t use Remove-WmiObject to make your RAM magically

disappear. You’ll typically use this Cmdlet to get rid of objects such as files,

printers, registry keys, and processes.

This Cmdlet has about as many arguments as Get-WmiObject, so it’s quite

flexible. In practice, though, there’s a much easier way to use this Cmdlet.

You simply use Get-WmiObject to get the list of objects you’re interested in

and then pipe it into Remove-WmiObject, and voilà, they’re done.

Here’s a good little exercise that shows how cool this Cmdlet actually is:

 1. Open Notepad on your computer.

 2. Run the following code:

Get-WmiObject -query “Select * from Win32_Process where name=’notepad.exe’”

 If you have Notepad open, it returns all the information you ever want to

know about the notepad.exe process.

 3. Now run this code:

Get-WmiObject -query “Select * from Win32_Process where name=’notepad.exe’”
| Remove-WmiObject

 Notepad is no longer running on your computer, all thanks to Remove-
WmiObject.

 Remove-WmiObject is quite powerful, and because it’s designed as a fairly

destructive Cmdlet you should make sure the objects you want to remove are

in fact the ones you really want to get rid of. The best way to do this is by que-

rying for the WMI objects and making sure the right objects are returned

before piping it into Remove-WmiObject.

Setting WMI properties using
Set-WmiInstance
The Set-WmiInstance Cmdlet is used for setting read-write WMI proper-

ties. Although a vast majority of WMI class properties are read-only, quite

a few aren’t, and this Cmdlet lets you take advantage of those properties.

An example of a class that has a read-write property is the Win32_
Environment class. It defines all the environment variables on the system.

DropBooksDropBooks

115 Chapter 8: Working with WMI

You can see all the environment variables defined on your system by running

this line:

Get-WmiObject Win32_Environment

Each environment variable consists of three properties: Name, Variable
Value, and UserName. The Name and VariableValue properties contain

the names and values of these variables, and the UserName defines the user

where the variable applies to. An entry of <SYSTEM> means it’s a system

variable, but if you see a specific username in there then those represent

user variables.

To create a new system environment variable called MyVariable with a

value of MyValue, you use the Set-WmiInstance Cmdlet like this:

Set-WmiInstance -class Win32_Environment -argument @{Name=”MyVariable”;VariableV
alue=”MyValue”;UserName=”<SYSTEM>”}

The -argument parameter is where you specify the name/value pairs that

will be created. The argument value is in the format of a hash table. I go

over hash tables in greater detail in Chapter 11, but for now suffice it to say

that a hash table is data structure that maps keys to values. In the Set-
WMIInstance command you issue in this section, an example of a key would

be Name, and MyVariable is an example of a value.

DropBooksDropBooks

116 Part III: Complex Data Description and Sharing

DropBooksDropBooks

Chapter 9

Bringing Strings into the Limelight
In This Chapter
▶ Understanding the ins and outs of strings

▶ Manipulating strings

▶ Dealing with string positions

▶ Altering the case of strings

▶ Performing powerful string pattern matches using regular expressions

Whether you’re writing e-mail or browsing the Web, you’re constantly

interacting with some form of text. Besides the spoken word, text is

one of the most common ways we communicate with one another. In fact,

I’m communicating with you right now through text. Even though comput-

ers are really just oversized and overpowered calculators, when it comes to

interaction between humans and computers, text is the natural choice for

communication. I mean, how useful would it be for the computer to display

1101000 1100101 1101100 1101100 1101111 to greet you instead of

writing Hello onscreen?

Interacting with computers by using text is important, which is why display-

ing, reading, and manipulating text are key features of any programming or

scripting language. PowerShell provides all the bells and whistles to make

all this work easy for you. In this chapter, you find out just how surprisingly

capable PSH is at dealing with and manipulating text. Armed with this knowl-

edge, you’ll be parsing, filtering, and doing all kinds of fun stuff with text in

no time.

Taking Your First Look at Strings
The technical name for text is string. Although you normally think of text

as having some meaning, a string is really nothing more than a consecutive

sequence of characters. It doesn’t matter what characters are placed next to

one another; they all form strings. Some examples of strings are

DropBooksDropBooks

118 Part III: Complex Data Description and Sharing

This is a string
Ldf3rj814
@@fdfds338adsvk
f
SDf sdfdki weird string

As you can see, a string can contain any character you want, can be

any length, and can include any white space such as spaces and tabs.

Theoretically, string length is unlimited, but in the real world, the length of a

string is limited to the amount of memory you have.

Differentiating between
empty and null strings
You can have a string that has zero length, which is a string that doesn’t

contain any characters, called an empty string. You can also have a string

with no length. Wait — isn’t a string with zero length the same as one with

no length? Well, not exactly. A null string is a special kind of string that hasn’t

been defined yet, so it doesn’t contain anything and doesn’t have a length. Its

value is the special automatic variable called $null.

If a variable has a data type of string and is defined but initially isn’t given a

value, it contains a null string instead. If empty strings are merely strings that

don’t contain anything, why can’t null strings just initialize to an empty string

so we can do away with the null-string concept altogether? The answer is

that this concept exists so that you can differentiate a string that hasn’t been

initialized yet from a string that is purposely set to have no value.

If the string is part of a command line parameter, for example, you can check

to see whether the value is equal to $null, which means that the user didn’t

provide a value for this parameter. This string is very different from an empty

string, because even though it’s just an empty (blank) string right now, the

user provided a value for it.

Creating literal strings
Strings are everywhere in Windows PowerShell. They exist as properties for

various objects. Also, they can be returned by different object methods. The

most direct way to create a string is to define what’s called a literal string.

DropBooksDropBooks

119 Chapter 9: Bringing Strings into the Limelight

You create literal strings by enclosing a sequence of characters in double

quotes. This way, you are literally defining the string. A literal string looks

like this:

“This is the definition of a literal string”
“...and here is another string”
“and a string with some random characters 35vndaa3$%@32”

Sometimes, strings are created for you automatically. When you combine a

string with another data type, for example, Windows PowerShell automatically

tries to convert that data type to a string for you.

Simplifying using Here-Strings
When you have to define a string that has line breaks or special characters

such as double quotes, you can do so by joining multiple strings like this:

$regularString = “First line of string`n” +
 “Second Line`n” +
 “Third Line”
Write-Host $regularString

As expected, you get this output:

First line of string
Second Line
Third Line

Although this code works, typing all those plus signs and `n characters to

generate a new line gets tiresome, especially if you’re trying to define a string

that is many more lines long. To make your life easier, you can use a Windows

PowerShell feature called Here-Strings. You create a Here-String by

starting it with an at (@) sign followed by a double quotation mark and then

a new line. You end a Here-String by using a double quotation mark fol-

lowed by the @ sign, and this needs to be done on a new line by itself. Windows

PowerShell treats all the text in between those symbols like a literal string.

This means that if you put a new-line character in that space, that new line is

preserved when you use the string. The Here-String version is the exact

equivalent of the preceding string example. See how much simpler it looks:

$myHereString = @”
First line of string
Second Line
Third Line
“@
Write-Host $myHereString

DropBooksDropBooks

120 Part III: Complex Data Description and Sharing

The best part about Here-Strings is that (because Windows PowerShell

treats everything between the start and end of a Here-String literally) you

can even include quotation marks in a Here-String, and PowerShell won’t

get confused. Here’s an example:

$noProblemString = @”
This is a Here-String with quotation marks.
I can enter “I am in quotes” here and it will
Display correctly if I output this string.
“@
Write-Host $noProblemString

Make use of Here-Strings whenever you find yourself defining a very long

string that includes new-line characters or quotation marks.

Performing String Surgery
You often need to manipulate strings to create new ones, such as splitting

them apart, combining them, or grabbing particular segments of a string.

Luckily, Windows PowerShell can provide a rich set of methods for string

manipulation because it’s built on top of the .NET Framework.

Combining strings
Because you often want to put strings together dynamically (as needed when

the code runs), combining strings is one of the most common string opera-

tions. A typical use is when you want to output some information onscreen

by combining some literal strings with variable values, as in this example:

for ($i = 0; $i -lt 5; $i++) {
 Write-Host (“The current value is: “ + $i)
}

You simply use the plus (+) operator to combine two strings. You can com-

bine more than two strings by using the plus operator between all the strings

you want combined, as shown here:

$a = “Windows PowerShell “ + “For Dummies”
Write-Host $a
$b = “Windows “ + “PowerShell “ + “For “ + “Dummies”
Write-Host $b

DropBooksDropBooks

121 Chapter 9: Bringing Strings into the Limelight

Combining strings with nonstrings
You can combine strings with other data types that aren’t strings, provided

that those data types can be converted either implicitly (automatically by

PSH) or explicitly (by first casting the value as a string). (For more about data

types, see Chapter 5.) When you combine a string with a nonstring value, and

the string shows up first when you’re reading the values from left to right,

the nonstring value is implicitly converted to a string and then combined

using the usual method. Does this process sound confusing? It’s easier than it

sounds. Take a look at this code snippet:

$myString = “You are number “
$myNum = 1
Write-Host ($myString + $myNum)
Write-Host ($myNum + $myString)

As expected, the first call to Write-Host displays You are number 1.

Windows PowerShell sees that you’re combining a string and a number (in

this case, an integer), so in the background, it first converts the number 1 to

the string 1 and then continues to combine the two strings.

The second call to Write-Host results in an error message saying that

it can’t convert “You are number” to a type “System.Int32”. Here,

Windows PowerShell sees that you’re combining a string and a number as

well, but because the first value it sees is a number, it tries to convert the

second value to the same data type. Because the string “You are number”

doesn’t represent a number, Windows PowerShell spits out an error.

The solution to the problem of combining a string and any other value, even

though the first value is not a string, is explicitly converting the other value

by casting (changing) it to a string. To do this, you add [string] before

the variable name to tell Windows PowerShell that you want this value to be

treated as a string (which forces the conversion). This modified version of

the second Write-Host statement works the way you want it to:

Write-Host ([string]$myNum + $myString)

To force a value that isn’t a string to be treated as a string, prefix it with

[string] to tell Windows PowerShell that you want to cast it into a string

data type.

DropBooksDropBooks

122 Part III: Complex Data Description and Sharing

Splitting strings
If you can combine strings, you have to have a way to split them apart. You

might have quite a few reasons for wanting to take a string apart. You may

want to take a string that’s delimited by a certain character, such as a line

from a comma-separated value (CSV) file, and get the individual strings that

represent different columns of data. Sometimes, you need to take just a por-

tion of a string, such as the first three characters of a name.

To split strings, you use nothing other than the (drumroll, please) split

method. The split method, in its simplest form, splits a string into an array

of strings by using spaces and tabs as delimiting characters. I discuss arrays

in Chapter 11, but for now, you can consider an array to be a group of similar

items that you can reference with an index. Think of an array as being a line

of schoolchildren, with each child (element) standing behind another. Then

you can refer to a child in that line based on his or her position, such as the

fifth child (counting from the front of the line).

Here’s a code snippet that takes a string with spaces and uses the split

method to break it into multiple strings:

$str = “This book is fantabulous!”
$str.split()

The output of that command sequence is

This
book
is
fantabulous!

Although that code is pretty cool and a neat trick, it doesn’t seem to be very

useful. To put some meat on the bone, have a look at the next example. You

have an IP address as a string, and you want to split the IP address so you

can find out the value of any of the four octets of that IP address. The split

method comes to the rescue again:

$myIP = “192.168.10.100”
$ipArr = $myIP.split(“.”)
Write-Host (“Number of elements in ipArr” + $ipArr.length)
Write-Host (“First octet: “ + $ipArr[0])
Write-Host (“Second octet: “ + $ipArr[1])
Write-Host (“Third octet: “ + $ipArr[2])
Write-Host (“Fourth octet: “ + $ipArr[3])

DropBooksDropBooks

123 Chapter 9: Bringing Strings into the Limelight

Notice a few interesting things in this example? Look at the call to the split

method, which takes a string as a parameter that specifies what characters to

use as delimiters. By running $myIP.split with “.” as the parameter, you

instruct the split method to take the string stored in $myIP and split it into

substrings, using a period as a delimiter.

An array has a property called length that defines how many items are

stored in it. The example displays the number of elements to show that

after the split method is called, $ipArr indeed has an array for four ele-

ments, just as expected. To grab the individual elements of the array, you

reference it by using the array’s index notation, which is in the format

$arrayname[index].

 Arrays are zero-index based, meaning that the first element is referred

to as $arrayname[0], so to find out the second element you need to

specify $arrayname[1]; to find the third element, you use $array-
name[2]; and so on. To get to any index you want, you have to specify

$arrayname[position - 1].

 When specifying the delimiter in the split method, you’re not limited to

one character. If you use multiple characters as delimiters, you can simply

combine them all and provide a string of all the delimiters. This code snippet

is functionally equivalent to the preceding code snippet, because it treats a

period, a colon, and a semicolon as delimiters in the given string:

$myWierdIP = “192.168:10;100”
$ipArr = $myWeirdIP.split(“.:;”)
Write-Host (“Number of elements in ipArr” + $ipArr.length)
Write-Host (“First octet: “ + $ipArr[0])
Write-Host (“Second octet: “ + $ipArr[1])
Write-Host (“Third octet: “ + $ipArr[2])
Write-Host (“Fourth octet: “ + $ipArr[3])

Snipping off a piece of a string
Another common string operation is grabbing a particular portion of a string,

called a substring. A substring can be a portion of the beginning or end of

the string, or somewhere in between. If the string is delimited, you can use

the split method for this operation, but in general, if you have a string and

want to grab any given substring from it, you use the substring method.

Have a look at this piece of code:

$name = “Steve Seguis”
$part1 = $name.substring(0,3)
$part2 = $name.substring($name.length-4,4)
Write-Host ($part1 + $part2)

DropBooksDropBooks

124 Part III: Complex Data Description and Sharing

Here, I define my full name as a string. Using the substring method, I tell

Windows PowerShell to return the first three characters of $name and assign

it to $part1. Then I tell it to grab the last four characters of $name and

assign it to $part2. Finally, I combine these two substrings to generate the

output Steguis.

The substring method of a string takes two parameters. The first param-

eter is the offset from the first position (start from the left) of the string to

where you want to start grabbing characters. The number 0 is used to denote

the first character. The second parameter is the length of the substring. It

defines how many consecutive characters you want to retrieve starting from

the offset provided in the first parameter.

 Whenever you want to grab a certain number of characters starting from the

beginning of a string, just use $stringvariable.substring(0,length),

where length is how many characters at the beginning of the string you want

to return.

All strings also have a length parameter that tells you how many characters

are in the string. To get a substring of a given length starting from the end of

a string, you have to perform some math, using the string’s length and the

number of characters you want to determine the starting point that the sub-
string method requires.

 Whenever you want to grab something from the end of a string, just use

$stringvariable.substring($stringvariable.length - count,
count), where count is the number of characters you want, starting from the

last character.

As I mention earlier in this section, you’re not limited to taking just the first

or last part of a string. You can use the substring method to grab any por-

tion of a string, as in this example:

$test = “The sky is cloudy!”
Write-Host $test.substring(4,6)

This code snippet outputs sky is because it takes the substring starting

with offset four (which is really the fifth character in the string) and returns

the next six characters.

 When using substrings, it’s very easy to introduce errors into your code, so

you should employ some defensive programming to protect yourself. If you

write a script and assume that a given string variable will always contain a

string that is more than six characters and use the substring command to

return the first four characters, what happens if the script suddenly encoun-

ters a value that has only three characters? The result is an error that causes

the script to quit. To guard against this error, you can wrap the substring

statement in an if/else clause to make sure that the length of the string is at

least the number of characters you want to extract, as in this example:

DropBooksDropBooks

125 Chapter 9: Bringing Strings into the Limelight

$a = “abc”
if ($a.length -ge 4) {
 Write-Host (“First four characters are: “ + $a.substring(0,4))
} else {
 Write-Host (“String has less than 4 characters: “ + $a)
}

Here, you check whether the length of $a is greater than or equal to four. If it

is, you display the first four characters; otherwise, you tell the user that the

string has fewer than four characters and just output the entire string.

Performing string substitutions
There’s a common saying among management staff: “Everyone’s replace-

able!” Although this saying is true, I’ve always found it to be a bit disturbing.

Unfortunately for poor little strings, the saying is true even for them. You can

replace any part of a string with another string by using the string’s replace

method. Consider this code snippet:

$str = “Steve is Evil!”
$newstr = $str.replace(“Evil”,”Good”)
Write-Host $newstr

This example literally replaces Evil with Good. The replace method takes

two parameters. The first parameter is the string you want to replace in the

string, and the second parameter is the string you want to replace it with. If

the string you want to replace doesn’t exist, nothing is replaced.

Working with String Positions
Sometimes, you need to find the position of a string in another string,

most commonly to calculate the starting position for grabbing a substring.

Suppose that you have an e-mail address as a string. Now you need to extract

the user and domain information based on the e-mail address. You can do

this operation easily in your head, because you know that the username is

whatever comes before the @ sign and the domain name is what comes after

the @ sign. You can perform this operation in Windows PowerShell just as

easily by using something like this code snippet:

$email = “someone@dummies.com”
$atpos = $email.IndexOf(“@”)
$user = $email.substring(0,$atpos)
$domain = $email.substring($atpos+1, $email.length-($atpos+1))
Write-Host (“Username: “ + $user)
Write-Host (“Domain: “ + $domain)

DropBooksDropBooks

126 Part III: Complex Data Description and Sharing

As you can see in the code snippet, you can find out the position of a string in

another string by using the IndexOf method. You call the IndexOf method

on the string you’re searching in (which in this case is $email), and the

parameter of IndexOf is the string you’re looking for. The value this code

returns is the index within the string that contains the first occurrence of the

given search string. If the search string isn’t found, the return value is -1.

This example returns a value of 7, which is stored in $atpos. Notice, how-

ever, that the @ sign is the eighth character in the string. Why does the code

return 7? Remember that when you’re referring to string indices, the first

character is always index 0; the second character is index 1; and so on.

Because the @ symbol is the eighth character in the string, the corresponding

index is 8-1, or 7.

Getting the username is very easy, because you just use the template for pull-

ing substrings that start from the beginning of the string. You start by using

the substring method and have it start at the beginning by using 0 as the

first parameter. To get the length of the string, you can just use the value of

$atpos because it already contains the value that’s equal to the length of the

string that comes before it.

You can extract the domain name in a similar fashion, but the process

requires a tiny bit more math. You have to set the starting point of the sub-

string to $atpos+1 because you want to exclude the @ sign from the string

that the code returns. To get the length of this substring, you need to take

the length of the string and subtract the position you start with.

 Another really good and common use of the IndexOf method to get the string

position is performing comparisons of partial strings. Suppose that you’re

writing a script that expects the value of a certain variable to contain a valid

e-mail address. A simple check for this value is to make sure that the string

contains an @ sign. In the real world, of course, this check isn’t enough to vali-

date an e-mail address, but for the purpose of this example, you can create a

simple test to see whether the value might conceivably be an e-mail address.

To make sure that a string contains an @ sign, you can do something like this:

$email = “my_invalid_email_address”
if ($email.IndexOf(“@”) -lt 0) {
 Write-Host “Invalid email address!”
} else {
 Write-Host “Valid email address!”
}

The IndexOf method always returns a value greater than or equal to 0 if it

finds the given search string in the string where this method is called; oth-

erwise, it returns -1. You can take advantage of this fact by checking to see

whether the return value of IndexOf is less than 0 to determine whether a

match wasn’t found.

DropBooksDropBooks

127 Chapter 9: Bringing Strings into the Limelight

Changing the Case of Strings
Strings come in all shapes and sizes, and sometimes, you want to create

some uniformity in their display. One way to keep string output uniform is

to make sure that all the characters are uppercase or lowercase. This feat is

easy to accomplish; strings have the built-in capability (with the ToUpper

and ToLower methods) to change the case of all their characters. Here’s an

example:

$str = “My MiXed CaSE stRInG”
Write-Host $str.ToUpper()
Write-Host $str.ToLower()

Coding really doesn’t get any easier than that. Although this example is con-

venient, its limitation is that these two methods convert the entire string

to uppercase or lowercase. What if you only want the first character to be

uppercase and force the remaining characters to be lowercase? A good exam-

ple of this scenario is if you’re displaying first names and want the characters

to be in that specific format. This task is doable, requiring just a little bit

more effort, as in this example:

$name = “sTEvE”
$a = $name.substring(0,1).ToUpper()
$b = $name.substring(1,$name.length-1).ToLower()
Write-Host ($a + $b)

Here’s where substrings really come in handy. Because the ToUpper and

ToLower methods affect the entire string, you just split the string into sub-

strings, apply the appropriate case-changing methods to the substrings, and

then recombine.

Using Regular Expressions
I’ve always found the term regular expressions to be a bit funny, because I find

nothing “regular” about them at all. Also, this term begs the question “Are

there irregular expressions?” (There aren’t, by the way).

A regular expression (RegEx, for short) is nothing more than a string that

describes a search pattern. The best part is that as simple as they sound, reg-

ular expressions really give you a lot of power to define very specific search

patterns. Before you can use regular expression in Windows PowerShell

(which turns out to be very easy), you need to know how to create regular

expressions (which, unfortunately, turns out to be more difficult).

DropBooksDropBooks

128 Part III: Complex Data Description and Sharing

 Again, because Windows PowerShell is built on top of the .NET Framework, it’s

no surprise that when you use regular expressions in Windows PowerShell,

you’re actually using the Regex .NET class. This means that if you see any

documentation using regular expressions in .NET, you can use the same infor-

mation and apply it to Windows PowerShell.

The most direct way to use regular expressions is to use the Regex object’s

methods directly. You can see whether a string contains a particular charac-

ter or substring by doing something like this:

[Regex]::IsMatch(“This book is really interesting.”,”book”)

This code snippet just looks to see whether the string “This book is
really interesting” contains the string “book”. If so, it returns true;

otherwise, it returns false. In this example, “book” is a very simple regular

expression using what’s called literal characters (which I get into in the next

section). You can put any kind of regular expression you want in place of

“book” to perform your desired search. Here’s another quick example:

[RegEx]::IsMatch(“I have 2 siblings.”,”[0-9]”)

The regular expression I’m using here is just a bit more powerful. “[0-9]”

means “match any digit from 0 to 9,” which in this case will match the 2.

Imagine trying to do that with the string’s IndexOf method. You’d have to

have ten separate calls for IndexOf to look for each character separately.

 The actual regular expressions are the second parameter in the IsMatch

method; the first parameter is simply the string you want to search in. For the

rest of the examples in this chapter, where I use IsMatch to demonstrate how

a particular regular expression works, you need to pay attention only to the

second parameter, because that’s the actual regular expression.

People have written books longer than this one on regular expressions,

which says a lot about how powerful they really are. Luckily for you, I don’t

spend the rest of this book teaching you regular expressions. Instead, I use

the rest of this chapter to show you the most important regular expressions

concepts you need to know.

Creating the simplest RegEx
using literal characters
Probably the most fundamental and natural of all the regular expressions

is a literal character, which is a single character match. If you have a string

such as “Regular expressions are powerful!”, and your regular

expression is the character u, the code will find a match based on the first

occurrence of u in that string. You can also combine characters to perform a

DropBooksDropBooks

129 Chapter 9: Bringing Strings into the Limelight

match. So given the same string as before, if you have the regular expression

“press”, the code will match the first occurrence of the string “press”,

which in this case is the substring “press” in the word “expressions”:

[Regex]::IsMatch(“Regular expressions are powerful!”,”press”)

In some ways, this method is very similar to the IndexOf method you use in

the preceding section to find a position of a substring in another string. The

difference is that by default, regular expressions are case sensitive. Searching

for windows in Windows PowerShell won’t return a match because the

code is specifically looking for windows in all lowercase characters.

Although you can use any character you want for your literal character search,

you have to watch out for special characters, which are characters that have

special meaning in regular expressions. These special characters are

 ✓ Backslash: \

 ✓ Dollar sign: $

 ✓ Dot: .

 ✓ Pipe: |

 ✓ Question mark: ?

 ✓ Star: *

 ✓ Plus sign: +

 ✓ Open square bracket: [

 ✓ Open parenthesis: (

 ✓ Close parenthesis:)

 ✓ Caret: ^

If you want to use any of these characters as a literal character, you must

first escape (mark to not treat as special) it by prefixing it with a backslash

(\). In the following example, I’m looking for dummies.com in the given

string. Because dummies.com contains a special character (namely, the dot)

I have to write the expression as “dummies\.com” instead:

[RegEx]::IsMatch(“Visit us at www.dummies.com.”,”dummies\.com”)

The dot operator is a very powerful character because it matches any single

character except for a new-line character (typically used if the string you’re

searching in consists of multiple lines). Take a look at this example:

[RegEx]::IsMatch(“bell”,”.ell”)

DropBooksDropBooks

130 Part III: Complex Data Description and Sharing

This example returns true because the RegEx “.ell” means any character

followed by “ell”. As a result, it also matches cell, tell, and well — and

also “4ell” and “#ell”. In other words, it matches anything followed by

“ell”. The dot is a single-character wildcard.

 You really should use the dot as a single-character wild card sparingly. You

have much better ways to describe string patterns, and these methods give

you much more control of which values are actually valid. What I mean by this

is that you should be as specific as possible when describing your pattern.

For instance, if you know it’s going to be a numeric value, then use the pat-

tern [0-9] instead of just using the dot which will match any single character

including non-numeric values.

Performing more dynamic searches
using character sets
Often, you need to perform a match based on variations of characters. A very

obvious example is looking for a digit from 0 to 9. Conducting a search like

this one without using regular expressions is tedious at best, so being able to

formulate a RegEx to describe this pattern is a godsend for lazy people like

me. Consider this code snippet:

$username = “testuser1”
[RegEx]::IsMatch($username,”testuser[0-9]”)

Here, you have a username variable that contains the value testuser1. If

you want to check for a match of this string, you can just perform a literal

match. But if you want to match any testuser string followed by a number,

you must instead replace the digit at the end with [0-9] instead. This code

matches anything that contains the string testuser followed by a single

digit from 0 through 9. [0-9] is called a character set and is used to define a

list or range of characters that you want to find in a given position.

 A character set defines a list or range of characters to match exactly one char-

acter within a given search string.

You aren’t limited to a range of characters such as [0-9] or [a-z]. You can

also define a list of characters you want, as in this example:

$name = “Anna”
[RegEx]::IsMatch($name,”Ann[ae]”)

DropBooksDropBooks

131 Chapter 9: Bringing Strings into the Limelight

Here, I want the name to match either Anna or Anne. I do this by making the

last character a character set of [ae], which means that a match will occur

whenever the string Ann is followed by either a lowercase a or a lowercase e.

If you want to exclude characters from a match, you can negate a character

set by prefixing it with the caret (^) symbol. This example shows how you

can look for a substring that ends in “ood” and starts with any character

except for f or h:

[RegEx]::IsMatch(“food”,”[^fh]ood”)

By placing a caret symbol within the character set [^fh], you negate the

statement and change its meaning to match any character except f or h.

So this example returns a value of false, because “food” starts with the

letter f.

As you might expect, writing regular expressions tends to get a bit tedious.

Some character sets are so common that some shortcuts for using them have

been defined. Table 9-1 lists the most common shortcuts.

Table 9-1 Most Common Shortcuts for Character Sets
Character Description Equivalent Character

Set

\d Any digit from 0–9 [0-9]

\w Any digit, uppercase and lowercase
letter, and underscore

[A-Za-z0-9_]

\s White-space characters (space, tab,
new line, and carriage return)

[\b\t\n\r]

\D Not a digit [^0-9]

\W Opposite of of \w. Any char-
acter that is not any
digit, uppercase and
lowercase letter or
underscore.

[^A-Za-z0-9_]

\S Negative of \s. Any character
that is not a whitespace
character.

[^ \b\t\n\r]

DropBooksDropBooks

132 Part III: Complex Data Description and Sharing

Using modifiers to define optional
or repeating sequences
The character sets you’ve looked at so far in this chapter are useful for repre-

senting various character permutations for a given match, but you also need

a way to define repeating characters or even optional characters. Suppose

that you have a script that needs to find a match to the word “favorite”.

You can use a literal character match (refer to “Creating the simplest RegEx

using literal characters,” earlier in this chapter), but what if the script also

must work with either the American or British spelling of this word? You

need to do something like this:

[RegEx]::IsMatch(“favorite”,”favou?rite”)
[RegEx]::IsMatch(“favourite”,”favou?rite”)

Both of these calls return true. The reason is that the character u is fol-

lowed by a question mark (?). The question mark indicates that the preced-

ing character can exist zero times or one time, making it effectively optional.

Technically, the question mark indicates that previous token is optional.

Tokens can be single characters, character sets, or even multiple characters

enclosed in parentheses. In the following example, both statements return

true because the “day” portion of the string “Monday” is enclosed in

parentheses, making the entire substring a token, and followed by a question

mark, which means that “day” is optional:

[RegEx]::IsMatch(“Monday”,”Mon(day)?”)
[RegEx]::IsMatch(“Mon”,”Mon(day)?”)

Repetition is another one of those patterns that you need to be able to

describe. Here’s a scenario in which repetition is useful. You work in an orga-

nization in which all the server names start with the string “SRV” and are fol-

lowed by some other descriptive name and a number, such as “SRVWEB1” for

your first Web server. You can’t just use character sets, because you don’t

know how many characters may follow the string “SRV”. You can create a

regular expression to define this pattern by using this statement:

[RegEx]::IsMatch(“SRVWEB1”,”SRV[A-Z0-9]+”)
[RegEx]::IsMatch(“SRVDC1”,”SRV[A-Z0-9]+”)
[RegEx]::IsMatch(“SRVFILE1”,”SRV[A-Z0-9]+”)

All three of these statements return true. The plus (+) operator is used

to describe a pattern in which the previous token is repeated one or more

times. SRV[A-Z0-9]+ describes a sequence in which you have a substring

that starts with SRV and is followed by one or more uppercase alphanumeric

characters.

DropBooksDropBooks

133 Chapter 9: Bringing Strings into the Limelight

This solution isn’t perfect, though, because SRV[A-Z0-9]+ also matches

TESTSRV2323. In other words, the string doesn’t have to start with SRV.

Rather, a substring must contains the sequence SRV followed by any char-

acter one or more times, which can also include just numbers. To refine this

code a little, you can change it to something like this:

[RegEx]::IsMatch(“SRVFILE1”,”SRV[A-Z]+[0-9]”)

This example is a little bit better because now you’re saying to match a sub-

string that starts with SRV followed by one or more capital letters and then a

digit from 0—9. This code matches the naming convention better, but it still

has the limitation of not enforcing the convention that the string itself must

start with SRV. (I address this limitation in the next section, “Using anchors

to maintain position.”)

The plus operator is good at defining repetition, but what if the repetition

is optional? Suppose that you want to perform a name search in which the

string that defines the name starts with Ann but can have zero or more let-

ters after it. The first thing that might come to your mind is

[RegEx]::IsMatch(“Ann”,”Ann[a-z]+”)

This example works in most cases and matches variations such as Anna,

Anne, and Annie. The problem is that it won’t match the name Ann because

the plus operator requires the token (which in this case is the character set

[a-z]) to exist at least once. How do you solve this problem?

The answer is the star (*) operator, which is similar to the plus operator but

means that the preceding token must match zero or more times. Any time

you see the description “zero or more times,” it should automatically ring the

“It’s optional” bell. So the correct solution to the name-search problem is

[RegEx]::IsMatch(“Ann”,”Ann[a-z]*”)

This statement returns true because the remaining characters after “Ann”

are optional.

The plus (+) operator means that the preceding token is repeated one or

more times, whereas the star (*) operator means that the preceding token is

repeated zero or more times, making it optional.

Another problem with a repeating pattern is you have to be able to set limits.

If you have to define a pattern of characters that fits the format of a U.S. zip

code (which is five digits in sequence), you can do this by using character

sets:

[RegEx]::IsMatch(“90210”,”[0-9][0-9][0-9][0-9][0-9]”)

DropBooksDropBooks

134 Part III: Complex Data Description and Sharing

This example works because you use a sequence of five character sets, each

of which restricts each character to a digit from 0–9. The code is a bit inef-

ficient, however, and — dare I say it? — tedious. The way to correct this is

to define repetition limits using curly braces. You can define a sequence of

exactly five numeric characters like this instead:

[RegEx]::IsMatch(“90210”,”[0-9]{5}”)

The number inside the curly braces indicates exactly how many times the

preceding token must repeat to represent a match. You can also use the

curly braces to define a range of repetition counts. If you want to describe a

string that starts with “USER” and ends in a sequence of two to five upper-

case letters, you can use

[RegEx]::IsMatch(“USERA”,”USER[A-Z]{2,5}”)
[RegEx]::IsMatch(“USERABC”,”USER[A-Z]{2,5}”)

Only the second statement returns true because the first statement has only

one character after the string “USER”. The first value in the curly braces is

the minimum repeat count, whereas the second value is the maximum repeat

count.

Using anchors to maintain position
The regular expressions you’ve created so far in this chapter are wonderful,

but something is lacking: defining the position of the search string within the

string being searched. This factor is important, as you see in the server-list

example in the preceding section. To go back to that example briefly, you

know that a server name starts with SRV followed by some characters that

represent its function and then a number, such as SRVWEB1. The best you

can do with what you know so far is

[RegEx]::IsMatch(“SRVFILE1”,”SRV[A-Z]+[0-9]”)

The problem, of course, is that this code also matches TESTSRVFILE1,

because a RegEx match looks for only the first occurrence of the given RegEx

pattern in the string. To fix this problem, you have to have a way to indicate

that this match must occur at the beginning of the string. You do this by

using the caret (^) symbol:

[RegEx]::IsMatch(“SRVFILE1”,”^SRV[A-Z]+[0-9]”)
[RegEx]::IsMatch(“TESTSRVFILE1”,”^SRV[A-Z]+[0-9]”)

DropBooksDropBooks

135 Chapter 9: Bringing Strings into the Limelight

By adding the caret symbol to the beginning of your RegEx, you’re saying that

this pattern must occur at the beginning of the string. Now the first statement

continues to return true, but the second statement returns false.

 The caret symbol has two faces. When you use it at the beginning of a RegEx

as in the preceding example, you’re using it as an anchor. When you use it

inside a character set, it acts as a negation operator, excluding the characters

defined in the set.

The opposite of the caret symbol is the dollar sign ($), which is used to per-

form a match at the end of a string, as shown here:

[RegEx]::IsMatch(“SRVFILE1”,”SRV[A-Z]+[0-9]$”)
[RegEx]::IsMatch(“TESTSRVFILE1”,”SRV[A-Z]+[0-9]$”)
[RegEx]::IsMatch(“SRVFILE1TEST”,”SRV[A-Z]+[0-9]$”)

By removing the caret symbol and putting a dollar sign at the end of the

RegEx, you’re telling it to look for the pattern at the end of the string. The

first two statements return true, but the last statement returns false

because SRVFILE1 (which matches the pattern) doesn’t occur at the end of

the string.

Coming up with alternatives
Sometimes, the pattern you’re trying to describe by using RegEx has a finite

number of variations. If you want to perform a simple domain-name check

using a RegEx to look for a string that contains any number of alphanumeric

characters followed by a dot and then ending in com, edu, or net, you’d

do this:

[RegEx]::IsMatch(“dummies.com”,”[A-Za-z0-9]+\.(com|edu|net)”)

Examine the RegEx a little closer. The first part is [A-Za-z0-9]+, which

defines a sequence of one or more alphanumeric characters. The next ele-

ment is \., which is a literal dot (remember that you have to use the back-

slash to escape the special character). The last part is the most interesting.

You use the pipe (|) symbol to define various alternative matches. Because

you’re restricting this check to domain names that end in .com, .edu, or

.net, this method is the most efficient way to define those variations.

DropBooksDropBooks

136 Part III: Complex Data Description and Sharing

Making use of RegEx in
Windows PowerShell
So far, I’ve used [RegEx]::IsMatch to help demonstrate the different regu-

lar expressions because it’s very simple and returns a true/false value

so that you can easily check to see whether an expression matches a given

string. An even easier way exists, however, to perform string comparisons

using regular expressions without having to use [RegEx]::IsMatch. You

already know that you can perform an exact string match by using the -eq

operator. You can also use -match and -notmatch operators to compare

strings with a regular expression. Here’s how you can use -match to perform

a RegEx match on a given string:

$email = “somebody@dummies.com”
if ($email -match “[A-Za-z0-9]+@dummies.com”) {
 Write-Host “$email is a dummies.com email address”
}

You can actually find many more uses for regular expressions. You can use

them to replace substrings by using the -replace switch, for example.

Here’s an example in which you want to replace a Web site’s name with the

string “WEBSITE NAME KEPT SECRET”:

$str = “Visit us at www.dummies.com”
$newstr = $str -replace “www\.[A-Za-z0-9]+\.(com|edu|net)”,”WEBSITE NAME KEPT

SECRET”
Write-Host $newstr

The first parameter of -replace is the RegEx that describes the pattern

you want to find, and the second parameter is the string you want to replace

it with. Think of this switch as being a very powerful search-and-replace

feature.

 Don’t confuse the -replace switch with the string’s replace method, which

performs a literal search and replace. The -replace switch allows you to

define regular expressions to describe the matching text that needs to be

replaced.

DropBooksDropBooks

Chapter 10

I’ll Take Numbers for $100, Please
In This Chapter
▶ Examining numeric data types

▶ Performing calculations

▶ Using the [Math]::round method to round off numbers

▶ Generating random numbers

▶ Changing a number’s data type

▶ Dealing with overflow

Computers big and small have one thing in common: They’re excellent

number crunchers. Next to strings, numbers probably encompass one

the most widely used data types in any programming or scripting language.

It’s highly unlikely that you’re going to use Windows PowerShell to perform

massive calculations to conduct weather simulations, but no matter how

hard you try, you just won’t be able to escape the need to deal with numbers.

The need can be something as simple as incrementing a value to control a

for loop or something a bit more complex, such as calculating the probabil-

ity of winning the lottery.

In this chapter, you use Windows PowerShell to perform many common

mathematical operations. Computer are just big calculators after all, so

knowing how to take advantage of PSH to make these calculations for you can

leave your brain cells to do more productive things, like reading the rest of

this book.

Putting Numeric Data Types
under a Microscope

I touch on data types in Chapter 5, but now I want to focus on just the

numeric data types in Windows PowerShell (which, not surprisingly, are the

same as .NET numeric data types). All the numeric data types in Windows

PowerShell can be classified in either of two categories: integral and

nonintegral data types.

DropBooksDropBooks

138 Part III: Complex Data Description and Sharing

Having a look at integral data types
Integral data types are whole numbers (numbers that don’t have decimal

values at the end). The only real difference among the four integral data

types is that each one supports a different range of values controlled by the

number of bits that composes it. The four integral data types are

 ✓ Byte: A byte (System.Byte in .NET) is an 8-bit unsigned data type that

has a range of values from 0 through 255. This data type is the only

numeric data type that can’t contain negative numbers. One use of this

data type is to represent the octets (another way to say “8-bit values”) of

a typical IP address. Because IP addresses consist of four octets, each

representing an unsigned value from 0 through 255, the byte data type

naturally is the ideal data type to represent these values. (For more info

on bytes, see the sidebar “Knowing your bits and bytes,” later in this

chapter.)

 ✓ Short: A short (System.Int16 in .NET) is a 16-bit signed data type that

has a range of values from –32,768 through 32,767. Short is the smallest

of the signed integral data types. Typically, you use a short only if you

want to store lots of small signed values while minimizing the memory

footprint. In the real world, however, you rarely see the short data type

being used except maybe to hold a short value retrieved from a data

store such as a SQL database.

 ✓ Integer: An integer (System.Int32 in .NET) is a 32-bit signed data type

that has a range of values from –2,147,483,648 through 2,147,483,647.

Integer is the basic data type of 32-bit processors because they pro-

cess 32-bit chunks of data at a time, which means that using integer

data types is optimal on these processors and results in the best per-

formance. This data type is also very convenient to use because it can

store a whole number within a range that’s more than 4 billion values

wide. That scenario covers 90 percent of the cases in which you need to

use whole numbers.

 Integer is the default data type that Windows PowerShell uses when you

define an integral number, such as 28, without specifying the data type.

 ✓ Long: A long (System.Int64 in .NET) is a 64-bit signed data type

that has a range of values from –9,223,327,036,854,775,808 through

9,223,372,036,854,775,807. Obviously, it’s designed to store awfully large

numbers. You’re going to need a long if you run out of values in an inte-

ger to represent the value you’re trying to store. Realistically, though,

you’ll probably use this data type sparingly because in most cases, the

range is bigger than you’ll need and takes up twice as much memory.

The only upside to a long is that it’s a natural data type for use with

64-bit processors, which calculate 64-bit values faster than other –bit

values. Otherwise, unless you plan to add large values (to calculate the

national debt or count the days until you can afford that red Ferrari),

you probably won’t use this data type much.

DropBooksDropBooks

139 Chapter 10: I’ll Take Numbers for $100, Please

Getting precise using nonintegral
data types
Nonintegral data types are data types that aren’t integral. (Ha! I bet you didn’t

expect that lame definition, did you?) Actually, this definition is mostly true

no matter how blatantly obvious and third-gradeish (is that even a word?)

it looks. Nonintegral data types are simply values that can contain fractional
(decimal) values. You use them when you want to get really precise, as in

storing the value of pi (3.14159265 . . .). The nonintegral data types are:

 ✓ Decimal: When you perform calculations involving incredibly large num-

bers that must be super-precise, such as calculating financial data or

measuring distances to satellites in space, the decimal data type is what

you want by your side. A decimal (System.Decimal in .NET) is a 96-bit

signed value that can represent values up to 7.9228×1028. I could write

out the exact value, but I think it’s sufficient to say that it can represent

enormously large numbers and, likewise, ridiculously small fractions of

a value.

 ✓ Single: A single is a single-precision IEEE 32-bit floating-point value from

–3.402823×1038 to –3.402823×1038. It’s also the smallest of the nonintegral

data types, but in most cases, its range of values is wide enough to cover

most instances in which you need to calculate fractional data.

 IEEE (pronounced “Eye-triple-E”) originally was an acronym for Institute
of Electrical and Electronics Engineers, a nonprofit organization com-

prised of industry associations that focus on the advancement of tech-

nology. Today, however, IEEE is a word of its own. The scope of IEEE has

grown so much over the past few decades that it’s now much larger than

that covered by its original meaning.

 ✓ Double: A double is a double-precision IEEE 64-bit floating-point value

from –1.79769313486231×10308 to 1.79769313486232×10308. Because it con-

tains double the number of bits to represent a fractional value, it’s much

more precise than a single (but still not as precise as a decimal). What

does this mean in plain English? If you’re representing a value that has

a fractional component and want it to be more precise than a single, but

the value doesn’t have to be as precise as a decimal, use this data type.

Double is the default data type that Windows PowerShell uses for nonin-

tegral data types unless you specify otherwise.

Doing Some Calculations
At some point you’ll use numbers to perform various calculations, no matter

how simple or complex those calculations may be. The four most important

operations are addition, subtraction, division, and multiplication.

DropBooksDropBooks

140 Part III: Complex Data Description and Sharing

Adding things up
The most commonly used mathematical operation is probably addition. You

add things up all the time, such as the cost of all the items in your shopping

cart or the number of tiles you’ll need for that bathroom makeover. You add

two numbers in PowerShell by using the plus (+) operator, as shown here:

$sum = 2 + 2
Write-Host $sum

This example contains nothing really earth-shattering. A number plus

another number equals some value. You can add only values that have the

same data type. Luckily for you, Windows PowerShell also converts differ-

ent data types for you automatically so that it can add the values correctly

without requiring you to do any extra work. Adding an integer to a double,

for example, works without any problems because Windows PowerShell

automatically converts the integer to a double, and the resulting data type is

added to the other value to return a double as well:

$sum = 4 + 9.321
Write-Host $sum.gettype().Name
Write-Host $sum

I output the type of $sum to show that it is indeed a double and that the value

of sum will be 13.321, as expected. Sometimes, you just want to change a

variable by adding a value to it, as in this example:

$children = 2
Write-Host (“My friend has “ + $children + “ children!”)
$children = $children + 2
Write-Host (“His wife just had twins so now they have “ + $children)

You change the value of $children by adding 2 to it and then reassigning

this value back to itself. Although this code works fine, it’s much better to

take advantage of the += operator. The following code snippet is equivalent

to the preceding one:

$children = 2
Write-Host (“My friend has “ + $children + “ children!”)
$children += 2
Write-Host (“His wife just had twins so now they have “ + $children)

Adding a value to itself is as simple as using the variable name += the value

you want to add. This code not only looks cleaner, but also saves you some

typing — which is always a huge plus.

DropBooksDropBooks

141 Chapter 10: I’ll Take Numbers for $100, Please

Within the realm of addition, a common procedure performed on integral

values is incrementing those values. Typically, for example, you increment a

value by 1 when running through loops to keep track of how many times the

loop has run. To increment a value by 1, you could do something like this:

$i = 0
$i = $i + 1
Write-Host $i

Needless to say, the output is 1 because you start off with $i having the value

0 and then adding 1 to it, effectively incrementing its value. This operation is

so common that you can perform it in an even easier way. You can increment a

value by 1 simply by putting two consecutive plus signs together:

$i = 0
$i++
Write-Host $i

This code snippet is exactly the same as the preceding one, because $i++

by itself is the same thing as $i = $i + 1. You’re a smart person, so you’re

probably thinking that you can simplify this code even further by changing it to

$i = 0
Write-Host ($i++)

Oddly enough, the output is 0. What happened? Well, the ++ operator is actu-

ally a two-faced creature (know anyone like that?). It can operate as either a

preincrement or postincrement operator, which means that where you put the

++ determines when the value is incremented. To get a better understanding,

look at this slight variation on the preceding code snippet:

$i = 0
Write-Host ($i++)
Write-Host $i

The only thing I do differently here is output the value of $i one more time

at the end. If you run this code, you’ll find that the first call to Write-Host

displays 0, whereas the second call displays 1. The reason? In the first call,

you use the ++ operator after the variable name, signifying a postincrement

operation.

When you postincrement by placing the ++ operator after the variable name,

the value of the variable is incremented only after the value has been used.

So in the first call to Write-Host, PSH first reads the value of $i (which

is 0), and only after the value is read does it actually increment its value to

1. This explains why the first call displays 0 (that’s the value it read before

incrementing it) and why the second call displays 1 (the value has already

been incremented).

DropBooksDropBooks

142 Part III: Complex Data Description and Sharing

To get the behavior you really want in the first place, you can use this code

instead to display the value 1 correctly using Write-Host:

$i = 0
Write-Host (++$i)

When you preincrement by placing the ++ operator before the variable name,

the value of the variable is incremented before the value is used.

Reducing values with subtraction
The opposite of addition is subtraction, and the great thing is that everything

I just showed you about addition applies to subtraction. You only need to

replace the plus sign with the minus (–) sign:

$difference = 10 - 5
Write-Host $difference

Similarly, you can use the -= operator if you want to decrease a variable by a

certain amount:

$hairOnHead = 10000
Write-Host (“When I was 16 I had “ + $hairOnHead + “ strands of hair on my

head.”)
$hairOnHead -= 7000
Write-Host (“...now I only have “ + $hairOnHead + “ :-(“)

Just as incrementing is in the realm of addition, decrementing is in the realm

of subtraction. Decrementing is just as useful as incrementing, and you can

find many good reasons for decrementing values, such as going through

array indices in reverse or writing a Windows PowerShell script to count

down the seconds to a space-shuttle launch. You can use the -- operator to

predecrement or postdecrement a value. The same rules apply to predecre-

menting and postdecrementing and to preincrementing and postincrement-

ing, so make sure that you pay attention to where you place the -- operator

in relation to your variables. Here’s an example:

$a = 10
Write-Host ($a--)
Write-Host $a
Write-Host (--$a)

The resulting output is

10
9
8

DropBooksDropBooks

143 Chapter 10: I’ll Take Numbers for $100, Please

Expanding through multiplication
When you want to multiply values, you use the star (*) operator, as in this

example:

$area = 4 * 7
Write-Host $area

You can also use the *= operator when you want to multiply a variable by a

value and then assign the result back to itself, like this:

$x = 5
$x *= 10
Write-Host $x

This code results in an output of 50 on the screen.

Reducing through division
If you can multiply, you also need to be able to divide. You can divide a

number by using the forward slash (/) operator:

$memoryInMB = 4096
$memoryInGB = $memoryInMB / 1024
Write-Host $memoryInGB

Knowing your bits and bytes
A bit is a single value that can have the value 0
or 1. A group of 8 bits is called an octet, whereas
a group of 4 bits (half an octet) is called a nibble.
In general, you may think of bytes as having 8
bits as well, but this isn’t always so, because a
byte is actually the smallest number of memory
that a CPU can address. In today’s computing
environment, a byte is almost always 8 bits
wide, so usually you can safely assume that a
byte equals an octet.

Most people refer to a kilobyte (KB) as 1000
bytes, but technically, it’s 1024 bytes (210).
Likewise, a megabyte (MB) is 1024 KB, a giga-
byte (GB) is 1024 MB, and a terabyte (TB) is 1024
GB. The distinctions are important when you

perform value-conversion calculations among
these different units, because if you use 1000
instead of 1024, the result will be incorrect.

Consider the value 325454832107489 bits.
If you want to convert this value to terabytes,
you first have to divide it by 8 to get bytes, divide
that result by 1024 to get kilobytes, divide that
result by 1024 to get megabytes, divide that
result by 1024 to get gigabytes, and (finally)
divide that result by 1024 to get terabytes. The
final value you get is 36.99 TB. If you use the
value 1000 instead of 1024, you get 40.68
TB. The difference may seem small at first
glance, but it’s actually a difference of around
3700 GB, which is big.

DropBooksDropBooks

144 Part III: Complex Data Description and Sharing

You guessed what’s next. The /= operator can be used to divide a variable by

a value and assign the result back to itself, like this:

$val = 8
$val /= 4
Write-Host $val

That’s not the end of the story, though. Whenever you divide anything,

there’s a high probability that the resulting value will be a fraction. When the

resulting value contains a fraction, the result is automatically converted to a

double, as in this example:

$val = 15 / 4
Write-Host $val
Write-Host $val.GetType().Name

The output of this example is 3.75, and the resulting data type is a double

even though you’re dividing integers.

Sometimes, you don’t care about the entire result of a division operation —

only about the remainder (otherwise known as the modulus). You do this

using the modulus (%) operator, as shown here:

$x = 54
$remainder = $x % 10
Write-Host $remainder

The output of this command is 4, because 10 can go into 54 only 5 times,

leaving a remainder of 4.

Rounding Off Values
Oftentimes, when you’re multiplying or dividing, you get a result that con-

tains far more decimal places than you really care for. Consider this code

snippet, which calculates the sales tax on an item that costs $49.99, assuming

that the sales tax is 8.375 percent (.08375):

$price = 49.99
$taxRate = 0.08375
$tax = $price * $taxrate
Write-Host $tax

Although this code produces an accurate result of 4.1866625, what you

really want is to return a value in dollars and cents, so you have to round this

value off to contain only two decimal places. You can do this by using the

[Math]::round method:

Write-Host [Math]::round($tax, 2)

DropBooksDropBooks

145 Chapter 10: I’ll Take Numbers for $100, Please

Now the code returns the result you want, which is 4.19.

The [Math]::round method takes two parameters. The first parameter

is the value you want to round off; the second parameter is the number of

decimal places you want to keep. If you want to leave out the last parameter,

it defaults to zero decimal places. So if you want to return the value in whole

numbers, you can run this code instead:

Write-Host [Math]::round($tax)

Creating Random Numbers
At times, you need to generate a random number (a number that is selected

for no particular reason). The uses can vary from creating a Windows

PowerShell–based number game to generating random filenames. This task

is very simple in Windows PowerShell because all you need to do is create

an instance of the Random object and use its Next method to generate the

value, as in this example:

$objRandom = New-Object Random
$rnd = $objRandom.Next(1,1000)

The Random object’s Next method takes two parameters, which represent

the lowest and highest values you want it to return. In this case, $rnd con-

tains a random value from 1 to 1000.

Converting Numbers
As I say in “Adding things up,” earlier in this chapter, Windows PowerShell

automatically converts numbers to whatever data type is necessary to per-

form the requested operation successfully — usually, by converting to a data

type that can represent both values without losing any precision. You can

force a number to be a different data type, but you have to watch out for data

loss. You convert from one data type to another by casting it into that data

type. (I talk about casting in Chapter 5, if you need a refresher.)

When Windows PowerShell converts to a data type that has more bits (which

means that it can also store a larger range of values), no data loss occurs,

which means that converting from an integer to a long is always successful

and the precision of the value is preserved. If you try to convert a value to a

data type that has a lower range, a few things can happen.

If the value you’re trying to convert is too large or too small for that data

type, Windows PowerShell returns an error, as in this example:

DropBooksDropBooks

146 Part III: Complex Data Description and Sharing

$val = 256
$newval = [byte]$val
Write-Host $newval

Windows PowerShell automatically treats the value 256 like an integer because

it’s an integral value that doesn’t have the data type explicitly defined. The

next line, which tries to convert this value to a byte, fails because a byte can

contain only values from 0 through 255, and 256 is outside that range.

Converting from a nonintegral data type to an integral data type will succeed

as long as the integral data type has a range that can accommodate the value

of the nonintegral value. This operation results in data loss if the nonintegral

value contains any fractional portion, because Windows PowerShell auto-

matically rounds off the number to make it a whole number. Take a look at

this code snippet:

$val = 365.58
$newval = [int]$val
Write-Host $newval

This code results in the output 366, because for 365.58 (which, by default,

has the data type of double) to be converted to an integer, it first must be

rounded of to the nearest whole number.

Watching Out for Overflow
Overflow is another common problem. Overflow is what happens when per-

forming any of the mathematic operations results in a value beyond the range

supported by that data type. Windows PowerShell solves this problem for

you whenever possible by automatically converting the overflowed value to a

data type that supports the larger value, as in this example:

$x = [byte]255
$y = [byte]3
$sum = $x + $y
Write-Host $sum
Write-Host $sum.GetType().Name

Here, I define two values of the byte data type, add them, and store the result

in $sum. As you recall, a byte can store only values from 0 through 255.

Adding these two variables results in the value 258, which is greater than

the range of values that a byte can hold. Oddly enough, Windows PowerShell

doesn’t complain and displays the value 258 in the first Write-Host state-

ment. What’s interesting is that in the next Write-Host statement, you’ see

that $sum is no longer a byte data type but has been converted to an integer

data type (Int32). PowerShell does all this work in the background, so you

don’t even have to think about it.

DropBooksDropBooks

Chapter 11

Grouping Data Using Arrays
and Hash Tables

In This Chapter
▶ Exploring arrays

▶ Making and using arrays

▶ Resizing arrays

▶ Making multidimensional arrays

▶ Examining other uses for arrays

▶ Using hash tables

People naturally try to group similar things, whether those things are

shapes, patterns, objects, or even abstract thoughts. Perhaps grouping

is our way of creating order in a world that naturally wants to fall apart. To

take off my philosopher’s hat for a second, grouping things makes sense for

some very obvious reasons. For one thing, groups allow you to organize a

large number of items in manageable units. An additional benefit is that you

can refer to a group of items by a single name rather than having to know

the name of each individual item. Arrays are one way you can group data ele-

ments in Windows PowerShell, and hash tables provide an efficient way to

store data elements by using name/value pairs.

In this chapter, you use arrays and hash tables to group data elements

together into a manageable structure rather than just having a variable for

each value you want to store. Arrays and hash tables are some of the most

effective and widely-used ways for organizing large groups of related data,

and you’ll see these concepts used repeatedly within this book and in many

of the scripts you’ll find out there.

DropBooksDropBooks

148 Part III: Complex Data Description and Sharing

Taking an In-Depth Look at Arrays
An array is a structure for organizing data sequentially in which each element

is accessed via an index value. In practice, you use arrays whenever you have

several items and want to use a single name to access them. Suppose that

you want to store a list of 100 computer names. Without arrays (or other data

structures), you have to define 100 variables. This process is not only inef-

ficient, but also highly impractical. Suppose that you have 10,000 computer

names instead. Do you want to create and manage 10,000 variables?

Arrays solve this problem. First, you create a block of data containing as

many elements as you want to reference by using just one name; then you

use a combination of the variable name and an index to access each data ele-

ment. To understand this concept better, see Figure 11-1, which shows what

an array might look like in memory. This array contains nine elements, all of

which are random integers. The array is called Array1. The first element of

an array is always index 0. The second element is index 1, the third element

is index 2, and so on.

Figure 11-1:
An array as
it might look
in memory.

35 72 23 61 83 42 86 57 43

0

Array1

1 2 3 4 5 6 7 8

 In other words, to get to any position you want in the array, you can find the

corresponding index value by subtracting 1 from the position you’re inter-

ested in. So if you want to find the fifth element in the array, you reference it

by using the array name and the index value of 4 (5–1).

Creating and Using Arrays
Arrays are very easy to define in Windows PowerShell. If you already know

the values of all the elements you want to include in the array, you can create

the array by using the comma operator. If you want to create an array like the

one depicted in Figure 11-1, earlier in this chapter, do this:

$Array1 = 35,72,23,61,83,42,86,57,43

DropBooksDropBooks

149 Chapter 11: Grouping Data Using Arrays and Hash Tables

 The only tricky thing about using the comma operator is creating an array

with only one element. To do this, you have to put a comma before the value.

Here’s how you’d create an array with only one element (in this example, the

number 12):

$SingleValArray = ,12

You can also explicitly cast values into an array (see Chapter 5 for more

information on casting) by doing this:

$Array1 = [array](35,72,23,61,83,42,86,57,43)

 Windows PowerShell treats arrays no differently from collections. A collection

in Windows PowerShell is just what the name implies: a collection or grouping

of any number of objects. You create a collection by using the @() method, so

you can also use this method for creating an array, like this:

$Array1 = @(35,72,23,61,83,42,86,57,43)

You can create an array or collection with no elements by using the @()

method by itself with nothing inside the parentheses, as in this example:

$BlankArray = @()

Accessing array elements
You can access any element in the array by using the array’s name followed

by open and close square brackets with the index for the element specified

within the braces. To display the fourth and eighth elements (index 3 and 7,

respectively), you just need to do this:

Write-Host $Array1[3]
Write-Host $Array1[7]

You can think of the array name/index format as being a kind of unique vari-

able name. You can use it not only to read data, but to set it as well, as

follows:

$Array1[5] = 83

You can access the last item of an array by using the index -1, as in

$Array1[-1].

DropBooksDropBooks

150 Part III: Complex Data Description and Sharing

Looping through arrays
All arrays have a property called length that returns the number of ele-

ments in the array. Using this property, you can easily loop through all the

elements in an array by using a simple for loop, such as this:

$names = “Steve”,”Bill”,”Jeff”,”Mark”,”Ryan”
for ($i = 0; $i -lt $names.length; $i++) {
 Write-Host $names[$i]
}

It’s important to check that the loop’s iterator ($i, in this case) is less than

$names.length, because the highest index you can go to is the array’s

length minus 1.

 Unlike other programming and scripting languages, Windows PowerShell

doesn’t complain if you specify an index of an array that doesn’t exist. It

simply returns a null value. This situation can be a source of bugs in your

scripts if you don’t pay attention to the indexes you’re using, because the

script will continue without complaining (or at least until you try to use an

empty value for things that expect a value to exist).

Treating arrays like collections has another really interesting side effect.

Sure, you can use the for loop as I just showed you to go through each item

in the array, but because an array is no different from a collection, you can

take advantage of the foreach loop to achieve the same result. The output

of the following foreach loop is exactly the same as the for loop using iter-

ator values (If you aren’t sure what iterators are, you can flip back to Chapter

6 where I cover them in greater detail):

$names = “Steve”,”Bill”,”Jeff”,”Mark”,”Ryan”
foreach($item in $names) {
 Write-Host $item
}

The foreach loop way of doings is very useful if you plan to do something

with all the items in the array; it saves you quite a few keystrokes, and

you don’t have to worry about indexes. The first method I showed you,

however — using index values — makes much more sense if you want to

go through the array in a different manner, such as going backward or

processing every other item in the array, as in these examples:

DropBooksDropBooks

151 Chapter 11: Grouping Data Using Arrays and Hash Tables

$names = “Steve”,”Bill”,”Jeff”,”Mark”,”Ryan”
Write-Host “Showing every other name...”
for($i = 0; $i -lt $names.length; $i += 2) {
 Write-Host $names[$i]
}
Write-Host “Showing the names in reverse order”
for($i = $names.length - 1; $i -ge 0; $i--) {
 Write-Host $names[$i]
}

Growing Arrays Dynamically
In traditional programming languages, arrays are allocated as contiguous

spaces in memory because their sizes are fixed based on how many elements

you say they will contain when you create them. This arrangement makes

arrays highly efficient data structures, especially for sequential read opera-

tions. Unfortunately, the downside is that if you want to grow the array so

that it is capable of storing more elements than you created it to store, you

typically have to create a new array and then copy each element of the old

array into the new array, which has more space to grow. Some programming

languages address this limitation by creating ways to grow arrays at will.

Adding more elements to an existing array in Windows PowerShell is so easy;

you won’t even have to think about it. You use the same += operator that

you use to increment the value of a numerical data type by a certain amount

(refer to Chapter 10). In the following code snippet, first I create an array

with five values and use a for loop to display the values. Next, I use the +=

operator to add another five values to the array. Then I use a for loop again

to display the values one more time, just to show that now the array truly

contains these ten values.

$arr = 2,3,5,7,11
Write-Host “First time around...”
for ($i = 0; $i -lt $arr.length; $i++) {
 Write-Host $arr[$i]
}
$arr += 13,17,19,23,29
Write-Host “Second time around...”
for ($i = 0; $i -lt $arr.length; $i++) {
 Write-Host $arr[$i]
}

DropBooksDropBooks

152 Part III: Complex Data Description and Sharing

Creating Multidimensional Arrays
You can also think of an array as being a single row of data. By creating an

array of arrays, however, you can create multidimensional arrays. A two-

dimensional array, for example, is one array of multiple arrays. You can use

this type of array to represent rows and columns of data, such as represent-

ing data in a table. The easiest way to create a multidimensional array is to

use the comma operator, but you need to enclose each nested array in paren-

theses, as follows:

$array1 = (1,2,3),(4,5,6),(7,8,9)

Just so you can visualize this concept a bit better, Figure 11-2 shows what

this multidimensional array might look like. Each of the value sets in paren-

theses represents an array of data. By using commas between these arrays,

you create an array that combines these arrays, so you can think of each

array as a row in a larger grid.

Figure 11-2:
A two-

dimensional
array as it

might look in
memory.

1 2 3

0 1 2

4 5 6

7

0

1

2 8 9

You still use the square brackets and indexes to access the data, but now

that you have two dimensions, you need to specify two indexes. The first

index selects the array (row) you want, and the second index selects the data

element in that array (column) you want to access.

DropBooksDropBooks

153 Chapter 11: Grouping Data Using Arrays and Hash Tables

To see this in practice, suppose that you want to get the third element of the

second array (the number 6 in $array1). Going back to what I said about

positions and indexes at the beginning of this chapter, you know that these

positions represent index 2 and index 1, respectively. Now, which order do

these values go in when you specify it with the index name? Well, the first

index you need to specify is which array you want to retrieve. In this case,

you want the second array (index 1). Then you want the third element (index

2) of this array, so to read this value, you have to do this:

Write-Host $array1[1][2]

If you look at Figure 11-2 again, you can see where I got this example from. In

that figure, the number 6 is in row 1, column 2.

Finding Other Uses for Arrays
Probably one of the coolest features of Windows PowerShell is how easy it

makes converting things to arrays. Suppose that you want to have an array

that contains all the currently running processes. You know you can run the

Get-Process Cmdlet to get this kind of information at any time, but you

want to take a point-in-time snapshot of what processes are running (perhaps

to compare with something later). You really have two options:

 ✓ Run Get-Process and write the output to a file for later reference

 ✓ Create an array; run Get-Process; and then, for each process, store

the values in that array.

This very short script is one way to implement this functionality by using

arrays:

$processes = @()
foreach($proc in Get-Process) {
 $processes += $proc
}
Write-Host (“Number of items: “ + $processes.length)
for($i = 0; $i -lt $processes.length; $i++) {
 Write-Host $i.name
}

DropBooksDropBooks

154 Part III: Complex Data Description and Sharing

The script creates a blank array, loops through each item returned by Get-
Process, and keeps adding these Process objects to the array by growing

it dynamically via the += operator. The second half of the script simply dis-

plays the process names from the array on the screen to show that it does

indeed have the correct information.

A script like this one has a few problems however. Although it works, it’s

tedious and not very efficient because you’re constantly resizing the array.

The great thing is that Windows PowerShell has an even better way to per-

form this operation for you. As it turns out, when you run a Cmdlet like Get-
Process or even a pipeline of commands, the resulting data is automatically

returned as a collection. Because collections and arrays are interchangeable,

the preceding script can be converted to this one instead:

$processes = Get-Process
Write-Host (“Number of items: “ + $processes.length)
for($i = 0; $i -lt $processes.length; $i++) {
 Write-Host $i.name
}

The array resizing and adding of elements is completely unnecessary; all you

need to do is simply assign the result of the Cmdlet to a variable. You’re not

limited to the return value of just one Cmdlet; you can take the result of a

pipeline of Cmdlets, as in this example:

$processNames = Get-Process | Select-Object Name | Sort-Object Name
for($i = 0; $i -lt $processNames.length; $i++) {
 Write-Host $processNames[$i]
}

 Using for loops to display the contents of everything in an array is the tradi-

tional way of doing things. Windows PowerShell is truly the scripting language

made for lazy people like me, because it lets you achieve the same thing just

by entering the name of the array. In other words, the whole for loop thing

I’ve been using to display each item in the $processNames array can be

reduced to this:

$processNames

Yes, that’s right — just “running” the array name automatically displays its

contents in the same way that you’ve been using the for loop method. Don’t

believe me? Try it out for yourself. Now wipe that grin off your face.

DropBooksDropBooks

155 Chapter 11: Grouping Data Using Arrays and Hash Tables

Working with Hash Tables:
The Array’s Useful Cousin

A hash table is another data structure that allows you to group data under

a common name. Hash tables are similar to arrays in that they too have an

index that’s used to access data elements, but unlike arrays, hash tables

don’t use sequential numbers for these indexes. Instead, hash tables store

data by using name/value pairs. The name is the index you use to get to the

value. The good thing about hash tables is that those names can be anything.

You can create a hash table that uses a user’s logon ID as the name and the

user’s password as the value, for example.

If you’re familiar with VBScript, a hash table is similar to a Dictionary

object.

Creating and using hash tables
The most straightforward way to create a hash table in Windows PowerShell

is to use the @{} method. It works almost the same way as the @() method

that you use to create collections (refer to “Creating and Using Arrays,” ear-

lier in this chapter), except that hash tables require you to explicitly define

the name (index) for each value and that you separate name/value pairs with

semicolons instead of commas. Here’s a hash table that implements a simple

username/password lookup:

$userpwdhash = @{jimmy = “n3uTR0n”; optimus = “Pr!m3”; pinky = “8R@!n”; bob =
“B1L03r”}

Write-Host (“Pinky’s password: “ + $userpwdhash[“pinky”])
Write-Host (“Jimmy’s password: “ + $userpwdhash[“jimmy”])

You can create a blank hash table by using @{} with nothing inside the curly

braces, as follows:

$emptyhash = @{}

You can think of a hash table as being a simple table with two columns and

as may rows as you have items in the hash table. The first column contains

the name, and the second column contains the value. To see the entire con-

tents of the $userpwdhash hash table, all you need to do is type $userpwd-
hash and then press Enter to get this output:

DropBooksDropBooks

156 Part III: Complex Data Description and Sharing

PS C:\TEMP> $userpwdhash

Name Value
---- -----
pinky 8R@!n
optimus Pr!m3
bob B1L03r
jimmy n3uTR0n

When you want to retrieve the value of any name, you simply use the same

syntax that you use to get the content of an array item, except with hash

tables, the index is the name portion of the name/value pair, as in this example:

$userpwdhash[“pinky”]

You can also access the value directly by using the dot operator:

$userpwdhash.pinky

The names you use in a hash table must be unique because they’re indexes

into the data structure.

When I create the $userpwdhash hash table and initialize it with these four

name/value pairs, I don’t put double quotes around the names. Although I

can do that (and the table would still behave the same way), I’ve purposely

not done it to demonstrate an assumption that Windows PowerShell makes:

When you specify name/value pairs during the creation of a hash table,

Windows PowerShell always assumes that the names are strings.

This assumption is why the hash-table creation and initialization processes

work just fine even though I left out the double quotes. I explicitly put double

quotes around the values, though, because technically, values can be any-

thing. By using double quotes, I’m explicitly defining the values as strings.

 A hash table returns $null whenever you try to retrieve a value for a name

that doesn’t exist. If you want to check whether a given name is already

defined in a hash table, you simply query for the value for that name and see

whether the value equals $null, like this:

if ($userpwdhash[“somebody”] -eq $null) {
 Write-Host (“The name somebody doesn’t exist in the hash table!”)
}

DropBooksDropBooks

157 Chapter 11: Grouping Data Using Arrays and Hash Tables

Modifying hash tables
Naturally, whenever you have a table structure (such as that of a hash table),

you want to be able to perform two key operations: adding and removing

entries. If you want to add another name/value pair to an existing hash table,

you use the hash table’s add method. The add method takes two parameters,

which are (not surprisingly) the name and value, in that order. So if you want

to add another user/password pair to the $userpwdhash hash table in the

preceding section, you can do something like this:

$userpwdhash.add(“tony”,”S7@rK”)

It’s important to enclose the name in double quotes if the name is a string,

because unlike the initialization routine, the add method doesn’t assume that

the name you provide is a string.

You can remove an entry from the hash table by using the remove method.

The remove method takes just one parameter, which is the name of the entry

you want to remove. Here’s an example:

$userpwdhash.remove(“pinky”)

Hash table internals
Hash tables derive their name from the way
they work and how the data is structured. You
already know that you can present a hash table
visually as a two-column table, but what’s this
whole hash thing? A hash is essentially a value
derived by putting some piece of data through a
hashing function. A hashing function is a com-
plex mathematical algorithm used to generate
a unique value based on the initial value you
provide. The algorithm is also designed to give
you the same unique hash value whenever you
give it the same input.

Putting these concepts together, a hash table
works by taking the index (name) you provide,
generating a hash from it, and then using it
internally to mark the location of the value for
this given index. Later, when you try to retrieve

or update the data, all you need to do is pro-
vide the same index. The hash function auto-
matically generates the same hash value that it
generated the first time you created that entry
and gives you access to that value’s location.

Because of all this, hash tables are highly effi-
cient data structures. Retrieving data from a
hash table that contains 100 items is just as fast
as retrieving data from a hash table containing
10 million items, because the hash values gen-
erated from your given index are numeric and
can be used to find an item quickly by means of
very fast numbers-based searching algorithms.
This high efficiency means that hash tables are
often used in database indexes to create fast
lookups, even on very large databases.

DropBooksDropBooks

158 Part III: Complex Data Description and Sharing

Looping through hash tables
Because the indexes used in hash tables are pretty much anything you can

come up with, you can’t use a simple for loop to go through each item. One

way to get around this limitation is to use your friend the array. You can grab

the names (otherwise known as keys), convert them to an array, and then

loop through the array to retrieve the values. I know that this process sounds

confusing, but here’s a nice little code snippet to show you how easy it is:

$names = @($userpwdhash.keys)
foreach($name in $names) {
 Write-Host ($name + “ = “ + $userpwdhash[$name])
}

See, that wasn’t too hard, was it? You use the @() method to create a col-

lection of names by giving it the keys property of the hash table. The keys

property contains a list of all the names being used in the hash table. Now

that you have the names in an array, you just use a foreach loop to go

through each item in the collection and do what you want with it. In this case,

I’m using it to display the name/value pairs onscreen in a different format.

DropBooksDropBooks

Chapter 12

Readin’ and Writin’ Files
In This Chapter
▶ Navigate through the file system

▶ Manage your files and folders

▶ Create your own data format using XML

▶ Make your output presentable using HTML

Although it’s great to perform calculations and do all kinds of fun stuff in

the Windows PowerShell console, many times you need to store data

somewhere such as in a file or database. The easiest and most direct place

to store data for long-term use is a file. Windows PowerShell not only makes

reading and writing simple text files easy, but also lets you create even more

complex files, like XML and HTML files.

In this chapter, you exercise your ability to both act as a producer and con-

sumer of files within your file system. Many files are created by people but

even more are automatically created by computers through programs and

scripts, so your ability to read, write, and even manage files within your file

system becomes a necessary skill, just like being able to use a remote is to a

couch potato.

Having Some Fun with the File System
One of the most fundamental skills you need to possess as a Windows

PowerShell user is the ability to manipulate files within the file system. This

manipulation includes creating, deleting, copying, moving, and renaming files

and folders. Sure, you can go back to using Windows Explorer, but have you

ever tried renaming 100 files by using the Windows GUI? Not much fun, was

it? How about deleting files matching a certain pattern? I can think of quite a

few scenarios in which managing the file system through the command line

is far easier than doing it through a graphical user interface (GUI). As you can

probably guess, Windows PowerShell includes many Cmdlets to help you do

all these things.

DropBooksDropBooks

160 Part III: Complex Data Description and Sharing

Moving around the file system
There’s a saying that you can’t get anywhere without knowing where you

are right now, and that’s especially true when you’re working in a command

line environment. In the Windows PowerShell console, the most obvious way

to find out which directory you’re in is to look at the Windows PowerShell

prompt directly. The current path is displayed there all the time, but if you

want to get this value (perhaps to use it somewhere else in a script), you can

use the Get-Location Cmdlet. This Cmdlet simply returns the full path to

your current location as a string.

Moving around the file system is another important capability because files

are spread throughout it. Being able to go from drive to drive and directory

to directory is critical. You do this by using the Set-Location Cmdlet. You

can go to a different directory, such as C:\Windows\System32, by running

this code:

Set-Location C:\windows

Set-Location is also aliased as CD, which means that you can use the famil-

iar CD (change directory) DOS command. You can just run CD C:\Windows

to achieve the same results Set-Location C:\Windows.

 As you see in upcoming chapters, Windows PowerShell uses Set-Location

as the Cmdlet name rather than something like Change-Directory because

Set-Location can also be used to change the current location to nontradi-

tional “drives” that are now available in Windows PowerShell.

Managing directories
Directories (folders) offer a great way to organize your files in manageable

units. To use them effectively, of course, you need to be able to create,

delete, copy, move, and rename them.

Creating directories
When you want to create a directory, you use the MKDIR or MD command. No, I

didn’t make a mistake. Those aren’t aliases to some fancy-looking Cmdlet. It’s a

bit odd to not have a Cmdlet for this task, because there’s a Cmdlet for practi-

cally everything else, but yes, you just use the old MD or MKDIR command. So if

you want to create a temp directory at the root of the C: drive, you run:

MD C:\temp

or

MKDIR C:\temp

DropBooksDropBooks

161 Chapter 12: Readin’ and Writin’ Files

Deleting directories
Deleting directories, on the other hand, requires the help of the Remove-
Item Cmdlet (I know — not very consistent). If you want to delete C:\temp,

you can just run

Remove-Item C:\temp

Remove-Item is aliased as RMDIR, so you can run RMDIR C:\temp to

achieve the same effect.

If the directory that you’re trying to delete isn’t empty, Windows PowerShell

prompts you to confirm the action. Alternatively, if you’re sure that you want

to get rid of that directory (including all subdirectories), you can use the

-Recurse switch:

Remove-Item -Recurse C:\temp

Copying directories
If I say that your next task is making a copy of a folder, I’m sure that you’ll

guess that the Cmdlet is Copy-Item and its alias is COPY. If you did make

those guesses, congratulations; you’re correct!

You need to be aware of something interesting about Copy-Item, though.

Take the simple case in which you want to copy C:\temp to C:\temp2. The

command you run is

Copy-Item C:\temp C:\temp2

Excellent! Now suppose that C:\temp contains a bunch of files and possibly

even subdirectories, so a recursive listing of the directory looks like this:

C:\temp
C:\temp\powershell.txt
C:\temp\temp2\testscript.ps1
C:\temp\temp2\testscript2.ps1

You want to do exactly what you did earlier: copy the entire directory struc-

ture of C:\temp to C:\temp2. You run the same Copy-Item C:\temp
C:\temp2 command, correct? No! If you run that command, a surprising

thing happens. Yes, you do get a C:\temp2 directory, but if you look inside

the directory, you see that it’s empty. You may think that there’s a bug in

Windows PowerShell. Well, there isn’t, so don’t bother contacting Microsoft

about it.

Copy-Item literally makes a copy of the particular item you specify. If you

tell it to copy a folder, it creates a copy of that specific folder and nothing

else — not even its contents. You’re clever, so you’ve probably guessed

what the solution is: a -Recurse switch in the Copy-Item Cmdlet. With this

DropBooksDropBooks

162 Part III: Complex Data Description and Sharing

knowledge in hand, you know that the correct way to make an exact copy of

the directory structure is to do something like this:

Copy-Item -Recurse C:\temp C:\temp2

That’s it! Now if you check the contents of C:\temp2, you see that it contains

a copy of all the contents of C:\temp.

Moving directories
If you decide to reorganize things and have to move directories around, you

use the Move-Item Cmdlet to get the job done. Here, I’m moving C:\temp to

E:\temp:

Move-Item C:\temp E:\temp

Yes, you guessed it: Move-Item is aliased as MOVE, so you achieve the same

thing by running MOVE C:\temp E:\temp.

Renaming directories
You can rename directories by using either of two methods:

 ✓ Rename-Item: The first method is to use the Rename-Item Cmdlet.

(Give yourself a pat on the back if you guessed the Cmdlet’s name before

seeing it here.) Suppose that you want to rename E:\temp to E:\temp.
bak. You can do that by running

Rename-Item E:\temp E:\temp.bak

The Rename-Item Cmdlet is aliased as REN.

 ✓ Move-Item: With Rename-Item out of the way, what could the other

method be? Notice the similarities between Move-Item and Rename-
Item. Both Cmdlets take two parameters, one being the old name and

the other being the new name. Not surprisingly, you can effectively

rename a directory by moving it. If you want to rename E:\temp to E:\
temp.bak, you can also do this:

Move-Item E:\temp E:\temp.bak

Manipulating files in the file system
File systems consist of files and directories. You can practically treat files

and directories like the same thing, however, when it comes to manipulat-

ing files within the file system. You use exactly the same Cmdlets to create,

delete, copy, move, and rename files that you use for directories. The same

cast of characters — New-Item, Remove-Item, Copy-Item, Move-Item,

and Rename-Item — is valid for files as well.

DropBooksDropBooks

163 Chapter 12: Readin’ and Writin’ Files

Reading Text Files
You may often need to read some information from a file, usually because

you need to take in data generated by the operating system or other applica-

tions for your own consumption. An example is reading a log file to deter-

mine whether last night’s backups were successful before performing some

action based on the information you gather from that file.

You read text files in Windows PowerShell by using the Get-Content

Cmdlet. In its simplest form, Get-Content takes one parameter, which is

the name of the file you want to read. It automatically opens the file, reads

in each line, and then stores these lines as an object array. Because Get-
Content returns an array, you can store the data it retrieves in a variable, as

in this example:

$data = Get-Content C:\Windows\setuplog.txt

Now that you have the contents of the file in a variable (or, more specifi-

cally, in an array), you can treat the data as an array of strings, and all array

functions and techniques apply. You also may want to use text files to store

information to be used as input parameters for a script — the names of com-

puters on which you want to perform some action, for example, or perhaps

a comma-delimited file of user attributes you want to use to update user

account metadata in Active Directory. Suppose that you have a text file that

contains a bunch of computer names, like this:

labdc1
labdc2
filesrv1
printsrv1
mailsrv1

You want to query the computer manufacturer and model for each of these

computers. You can use a combination of techniques that I cover earlier in

this book, such as reading from a text file, looping through an array (Chapter

11), and using Windows Management Instrumentation (WMI) (Chapter 8)

to query remote computers.

Take a look at this script, which does exactly what you want:

$computernames = Get-Content c:\temp\computers.txt
foreach($name in $computernames)
{
 $compinfo = Get-WmiObject -class Win32_ComputerSystem -computername $name
 Write-Host ($compinfo.name + “ - “ + $compinfo.manufacturer + “ - “ +

$compinfo.model)
}

DropBooksDropBooks

164 Part III: Complex Data Description and Sharing

 If you forget how to use Get-WmiObject, you can flip back to Chapter 8 for a

refresher.

The best part is that other than using Get-Content to read the computer

names from the text file, the rest of the script is just a standard way of work-

ing with a collection.

You can also use Get-Content in a pipeline to achieve a similar effect. This

command pipeline performs essentially the same thing:

Get-Content c:\temp\computers.txt | foreach{Get-WmiObject -class Win32_
ComputerSystem -computername $_ | select-object name,
manufacturer, model}

You can control how many lines are retrieved, and when you use Get-
Content in a pipeline, you can also control how many lines to send through

at a time. To do this, you use the -totalCount and -readCount switches

for the Get-Content Cmdlet. If you want to read only the first 100 lines of a

file, for example, you run this command:

Get-Content c:\temp\readme.txt -totalCount 100

Similarly, to read two lines at a time, you run this command:

Get-Content C:\temp\computers.txt -readCount 2 | Write-Host

 Get-Content can read the contents of any file, not just text files. It can even

read binary files (although, of course, none of it will make sense unless you

know how to interpret the binary format). You can read file contents by using

the -Encoding switch of Get-Content and specifying whatever data type

you expect the data to be in (such as Byte) to read the raw data as bytes.

Writing Files
You have three ways to write to a file. The first method is probably familiar

to you already: redirecting the output to a file by using the redirection opera-
tor (a fancy name for the greater-than sign). This command sequence lists

the contents of C:\windows\System32 and writes this output to C:\temp\
system32_contents.txt:

Get-ChildItem C:\windows\system32 > C:\temp\system32_contents.txt

The next method uses aCmdlet. The Cmdlet version of the redirection opera-

tor is the Out-File Cmdlet. This command sequence is functionality equiva-

lent to the preceding one:

Get-ChildItem C:\windows\system32 | Out-File C:\temp\system32_contents.txt

DropBooksDropBooks

165 Chapter 12: Readin’ and Writin’ Files

On the surface, Out-File may seem to be a redundant addition to Windows

PowerShell, but in fact, it’s capable of doing much more than just simple redi-

rection. With redirection, all you get is the equivalent of a file dump of what

you see onscreen, which is exactly what you get from the default use of Out-
File. The difference is that Out-File gives you a few options in addition to

performing a quick dump of what would have been displayed onscreen. You

can take advantage of these options by specifying the appropriate Out-File

Cmdlet switch listed in Table 12-1.

Table 12-1 Out-File Cmdlet Switches
Switch Description Example

-encoding Specifies the character
encoding used in the file. This
encoding can be one of the
following values: Unicode,
UTF7, UTF8, UTF32, ASCII,
BigEndianUnicode, Default, or
OEM. Unicode is the default
encoding type.

Out-File c:\
test.txt
-encoding ASCII

-append Appends to the file rather
than overwriting its contents.

Out-File c:\
test.txt -append

-width Defines the maximum number
of characters on each line.
If the line being written con-
tains more than this value, it is
simply truncated. By default,
this switch follows the value
used by the current Windows
PowerShell console settings.

Out-File c:\
test.txt -width
150

-force Tries to overcome any restric-
tions for writing to the output
file, such as overriding the
read-only attribute of the file.

Out-File c:\
test.txt -force

-noClobber Prevents Out-File from
trying to write to the output
file if it already exists.

Out-File c:\
test.txt
-noclobber

-Confirm Prompts for confirmation
before continuing with the
command.

Out-File c:\
test.txt
-confirm

DropBooksDropBooks

166 Part III: Complex Data Description and Sharing

The final way to write to a file is to use the Set-Content Cmdlet. Because so

many options are already built into Out-File, it may seem a bit strange to

have yet another Cmdlet to write to a file, but some differences exist between

Set-Content and Out-File. The biggest difference is that by default, Out-
File formats the data in the same way that it’s displayed onscreen before

writing that data to a file, whereas Set-Content writes the data without any

modifications.

Use Out-File to perform a straightforward file dump of what you would see

onscreen, but use Set-Content to write a file if the data is already formatted

a certain way and you don’t want it going through any kind of conversion.

For completeness, here’s how the preceding output examples look with Set-
Content:

Get-ChildItem C:\windows\system32 | Set-Content C:\temp\system32_contents.txt

 If you run Get-Help on Set-Content, you notice that it doesn’t have an

append switch like Out-File that appends to an existing file. That’s because

Set-Content can’t append to a file; you have to use the Add-Content

Cmdlet instead.

Working with XML
Extensible Markup Language (XML) is document format that allows you to

define your own markup within the document. A typical document format

such as a Microsoft Word document or a HTML Web page has a very specific

formatting structure, with specific tags defining how various elements should

be rendered onscreen (such as bold and underlined text). XML is different

in that you can create the format that suits you best; however, you want to

define the data it contains. In general, XML describes and defines data, not

how the data should appear onscreen. XML doesn’t care about how the docu-

ment will eventually look; its only concern is to give meaning to the data that

it contains. Here’s an example of a very simple XML file:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<desert name=”Sahara”>
<animal type=”camel”>Joe</animal>
<animal type=”snake”>Mark</animal>
<animal type=”elephant”>Allan</animal>
</desert>

The first line declares what this file is: an XML Version 1.0 file encoded with

the Latin-1 character set (ISO-8859-1). Note: This first tag is optional, but it’s

always a good idea to start an XML file with this tag so that anyone looking at

it knows that it is in fact an XML file and not some random jumble of text.

DropBooksDropBooks

167 Chapter 12: Readin’ and Writin’ Files

Next comes the root element. You can think of XML elements as having a tree

structure (see Figure 12-1). The root element is the common point that glues

all the other elements together. In this example, I define a root element of a

type that I call desert. This element has one attribute, called name, which

has the value Sahara. The desert root element contains three child ele-

ments (nodes) of a type I call animal. Each animal element has an attribute

called type that defines what kind of animal it is. The text outside the angle

brackets is the data associated with that element. In this case, I’m giving each

of these animal elements a name as its data. Then each element must be

terminated by a closing tag, which is an angle bracket followed by a forward

slash, the element name again, and a closing angle bracket (see Figure 12-2).

Figure 12-1:
Graphical

representa-
tion of a

sample XML
format as a
hierarchal

tree.

animal
type = camel

Data = Jack

desert
name = Sahara

animal
type = snake

Data = Mark

animal
type = elephant

Data = Allan

Root Element

Child Element

Data Element

Figure 12-2:
HTML

element
tags in
detail.

<animal type=”camel”>Joe</animal>

opening element tag attribute attribute value

data closing element tag

Because XML files are really nothing more than flat text files, they offer the

ultimate flexibility and portability when it comes to defining your own data

structures. If you can create an XML file and read an XML file, you can most

certainly talk to any other program that can read and write XML files.

DropBooksDropBooks

168 Part III: Complex Data Description and Sharing

Reading and writing XML files
One of my favorite things about Windows PowerShell is how reusable

everything is. Reading an XML file in Windows PowerShell, for example, is

no different from reading a regular text file; you just use the Get-Content

Cmdlet. Get-Content by itself returns just the contents of the file, so to tell

Windows PowerShell that you want the file to be treated like an XML file, you

have to cast the variable with the [xml] tag. This example, which assumes

that the sample XML file in the preceding section was saved as sample.xml,

reads the contents of sample.xml into $myXMLFile:

[xml]$myXMLfile = Get-Content C:\temp\sample.xml

I’ve said that you can think of an XML file as having a tree structure. Well,

now that you have the contents of the XML file stored in the $myXMLfile

variable, you can access the different elements of the XML file by using the

dot operator to access each child element in the tree. If you want to retrieve

the desert name, you can run

$myXMLfile.desert.name

You can list all the animal elements within desert like this:

$myXMLfile.desert.animal

The output will be

type #text
---- -----
camel Joe
snake Mark
elephant Allan

Because the contents of the file are now in memory, you can add more child

nodes, if you want. Suppose that you want to add another animal node in

which the type equals vulture and the data (#text) equals George. You

can do this by running this sequence of commands:

$newanimal = $myXMLfile.CreateElement(“animal”)
$newanimal.SetAttribute(“type”,”vulture”)
$newanimal.psbase.innertext = “George”
$myXMLfile.desert.AppendChild($newanimal)

The first line creates a new element using the existing XML object. The ele-

ment is called animal and is stored in the $newanimal variable. Right now

it’s not part of the hierarchy because you’re just creating an element that

you’ll insert later. Then you use the SetAttribute method to set the type

attribute to vulture and finally to set the data attribute to George. You set

the text data of an element by assigning the value to the psbase.inner-
text property of the element.

DropBooksDropBooks

169 Chapter 12: Readin’ and Writin’ Files

Now that your new element contains all the attributes and data you want

it to possess, you can insert it into the tree. In this case, because you want

the new element to be at the same level as all the other animal elements,

you call the AppendChild method on the desert element and give it the

newly created animal element as a parameter. Now if you run $myXMLfile.
desert.animal, you get this output:

type #text
---- -----
camel Joe
snake Mark
elephant Allan
vulture George

With the data updated, you may want to go ahead and save the changes. You

save XML data to a file by calling the save method of the XML object. In this

case, if you want to save your changes back to the sample.xml file, you can run

$myXMLfile.save(“C:\temp\sample.xml”)

If you open the sample.xml file in a text editor, it now contains the new

child node you just created and looks like this:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<desert name=”Sahara”>
 <animal type=”camel”>Joe</animal>
 <animal type=”snake”>Mark</animal>
 <animal type=”elephant”>Allan</animal>
 <animal type=”vulture”>George</animal>
</desert>

Saving objects in XML files
XML is a highly extensible format, and you can use it to save and represent

practically anything you can imagine. Sometimes, for example, you want to

save objects to a file so that you can retrieve them later. Objects can contain

any number of properties and values, and without XML, your only other option

is to store the objects in a binary format. Windows PowerShell gives you the

ability to export and import objects to and from XML files just as easily.

Consider a scenario in which you want to keep a record of running processes.

You know that you can get this information by running Get-Process and

storing it in a variable. The problem is that you want to save this information

to a file so you can analyze it later. One simple way is to run Get-Process

and redirect the information to a simple text file. If you open the simple text

file in Notepad, you see that it’s neatly formatted and easy to read, but you

can’t manipulate it easily in Windows PowerShell without having to perform

some string parsing. This method is the old way of doing things; Windows

PowerShell offers a much better option.

DropBooksDropBooks

170 Part III: Complex Data Description and Sharing

Remember that Windows PowerShell is object-oriented. If you save objects

to a file, you want to be able to load the contents of that file later and con-

tinue to treat the objects as objects without having to figure out string pat-

terns and parse the file to re-create the objects. Windows PowerShell solves

this problem by providing two very useful Cmdlets: Export-CliXML and

Import-CliXML. Export-CliXML exports objects to an XML file, and

Import-CliXML imports XML files into objects.

Going back to the process-tracking problem in the preceding section, you can

persist the process information by running

Get-Process | Export-CliXML C:\temp\process.xml

If you’re curious what the processes look like now that they’ve been saved in

an XML file, go ahead and open process.xml in a text editor. You get some-

thing very messy-looking, like this:

<Objs Version=”1.1” xmlns=”http://schemas.microsoft.com/powershell/2004/04”><Obj
RefId=”RefId-0”><TN RefId=”RefId-0”><T>System.Diagnostics.
Process</T><T>System.ComponentModel.Component</T><T>System.
MarshalByRefObject</T><T>System.Object</T></TN><ToString>System.
Diagnostics.Process (alg)</ToString><Props><I32
N=”BasePriority”>8</I32><B N=”HasExited”>false</
B><S N=”Handle”>4000</S><I32 N=”HandleCount”>105</
I32><I32 N=”Id”>2012</I32><S N=”MachineName”>.</S><S
N=”MainWindowHandle”>0</S><S N=”MainWindowTitle” /><S
N=”MainModule”>System.Diagnostics.ProcessModule (alg.exe)</S><S
N=”MaxWorkingSet”>1413120</S><S N=”MinWorkingSet”>204800</S><Obj
N=”Modules” RefId=”RefId-1”><TN RefId=”RefId-1”><T>System.Diagnos
tics.ProcessModule (UxTheme.dll)</S>

Okay, you caught me — that’s just a small excerpt of what the file actually

looks like. All the data is spelled out in clear text but of course tagged appro-

priately with XML elements to define what each data element is supposed to

represent. This result is a big difference from the simplistic output you get

from just redirecting the output of Get-Process to a plain-text file.

If you want to recover your data into PowerShell so that you can use it like

any other object, you can run

$ProcHistory = Import-CliXML C:\temp\process.xml

You can see the processes you saved by running

$ProcHistory

DropBooksDropBooks

171 Chapter 12: Readin’ and Writin’ Files

Hmm . . . so what? You could have done that with a regular text file, right?

Well, yes, the default output is the same — but now try to filter the objects so

that only processes where the Handle value is greater than 100. Also, make

sure that the output is sorted by the Handles column. That sorting would

take more than a bit of clever manipulation if all this data were just raw text,

but because you recover the objects themselves, you can run all your stan-

dard Windows PowerShell object manipulation tricks, as in this example:

$ProcHistory | Where-Object {$_.Handles -gt 100} | Sort-Object Handles

Sweet! In one line, you’ve accomplished what traditional textcentric script

writers would have to write dozens of lines to do.

Working with HTML
When talking about Windows PowerShell, I sometimes feel like I’m selling

knives on one of those infomercials — you know, the ones that keep saying,

“But wait, there’s more!” With Windows PowerShell, there’s always more, and

because you can manipulate regular text files and XML files, why shouldn’t

manipulation work with HTML files? This functionality never fails to bring a

stupid grin to my face, because I don’t know how many times in my career

I’ve written scripts only to have someone not like the simplistic text output

and demand something a bit fancier, like HTML.

To generate HTML pages from a traditional script, you have to write the

HTML code output from scratch yourself, meaning that you also have to

know how to create HTML files manually. Writing HTML files is a topic

beyond the scope of this book, but it’s the most awesome part about

PowerShell’s ability to generate HTML output: You don’t need to know

about writing HTML files (or at least don’t need to know much). Windows

PowerShell allows you to just do something like this to convert the output of

Get-Process to a simple HTML page:

Get-Process | ConvertTo-HTML | Out-File C:\temp\processes.html

What you end up with is what you see in Figure 12-3.

Is it pretty? No! Will it get you that big raise you’ve been asking for? Highly

doubtful! Was it easy? Yes! It’s hard to really appreciate how big a leap gen-

erating HTML output using PowerShell is compared with, say, Windows Shell

scripting or VBScript unless you’ve ever tried to code one of these routines

yourself. Even without that appreciation, you have to admit that the ability to

do all this with only one line of code is impressive.

DropBooksDropBooks

172 Part III: Complex Data Description and Sharing

Figure 12-3:
Get-Process
output con-

verted to
HTML.

Face it, though — the vast majority of people don’t enjoy sitting down looking

at plain text all day long unless they’re . . . umm . . . Unix admins. Wouldn’t it

be great if you could somehow change the way ConvertTo-HTML works so

that the output can be a bit more dressed up? Of course you can!

You can format HTML in either of two ways. The most straightforward way is

to add formatting tags directly to the document. If you want to display bold

red text, for example, you can have something like this in your HTML file:

My Bold Red Text

That’s a quick and easy way to change the presentation of any particular part

of your HTML document.

Another (and often better) method is to use style tags, which are defined

globally in the document. Instead of setting the formatting of an individual

element, as in the preceding example, you can say something like “all table

headers will have a blue background, and all table cells will have a red

background.”

ConvertTo-HTML has three switches that you can use to customize the way

that the resulting HTML file is rendered, as shown in Table 12-2.

DropBooksDropBooks

173 Chapter 12: Readin’ and Writin’ Files

Table 12-2 ConvertTo-HTML Switches
Switch name Description Example

-title Sets the title of the
HTML page.

-title “Process List”

-head Adds whatever you
want to the <HEAD>
section of the HTML
page.

-head “<META
name=”Author”
content=”Steve Seguis”

-body Adds whatever you
want to the <BODY>
section of the HTML
page.

-body
“<CENTER><H1>PowerShell
FTW!</H1></CENTER>”

Armed with this knowledge, you can create a Windows PowerShell script to

enhance the look and feel of the Get-Process HTML output:

$format = “<TITLE>My Processes</TITLE>”
$format += “<style>”
$format += “TABLE{border-width:2px;border-style:solid;background-color:yellow}”
$format += “TH{color:blue}”
$format += “TD{color:red}”
$format += “</style>”

$body = “<CENTER><H1>Process List</H1></CENTER>”

Get-Process | ConvertTo-HTML -head $format -body $body | Out-File c:\temp\
processes.html

In this example, I use the $format variable to store the text that will be

inserted into the <HEAD> tags of the HTML file. I create a title for the HTML

page and then define a style that sets the TABLE tag to apply a 2-pixel solid

border and a background color of yellow. All table headers (TH) will have

blue text, and all table cells (TD) have red text. I also add a heading, cen-

tered on the page, by adding something to the <BODY> section. The resulting

output is a tad bit prettier (okay, maybe not prettier, but more colorful) than

the first attempt, as you can see in Figure 12-4.

DropBooksDropBooks

174 Part III: Complex Data Description and Sharing

Figure 12-4:
A colorful
version of

the Get-
Process

HTML
output.

You may be wondering why I explicitly defined “<TITLE>My Processes</
TITLE>” in the head when I could just as easily have used the -title

switch. Unfortunately, that’s not how things work. Yes, the -title switch

sets the contents of the <TITLE> tags when it’s used, but if you also have

-head defined, anything that you specify for -head overwrites everything in

the <HEAD> tag.

Whenever you use -head to manipulate the resulting HTML document by

using ConvertTo-HTML, you need to define the <TITLE> tags explicitly to set

the title of the page because the -title parameter is ignored.

It doesn’t seem like much right now, but ConvertTo-HTML opens a world

of potential for you as a script writer, because it lets you create output files

that have a much richer look and feel than just plain text. Also, because the

files are formatted in HTML, you can post them quickly on an intranet page

to share with your colleagues. Imagine having a Web page where people can

find up-to-date HTML pages containing the latest information about your

servers retrieved through Window PowerShell. The possibilities are endless.

DropBooksDropBooks

Chapter 13

Going On a Date with PowerShell
In This Chapter
▶ Getting a date

▶ Performing date calculations

▶ Working with time zones

Whether you’re scheduling an automated task, generating time stamp–

based log file names, or trying to deal with date-related problems

such as the infamous Y2K bug or the change in daylight saving time, dates

are an important part of many computing tasks. Windows PowerShell builds

on top of the rich Date and Time support provided by the .NET Framework

and adds a few features such as the capability to use Unix-style formatters to

modify how the dates are presented.

In this chapter, you define dates and times and use them in different sce-

narios such as calculating elapsed time or figuring out daylight savings time.

You might not use dates and times as much as you use other data types, but

they’re very important because they’re very relevant to our day-to-day life.

Even if you don’t need it just now, make a note of this chapter because soon

enough you’re bound to need it, even if it’s something as simple as trying to

display the current date and time to screen.

Going On Your First Date
To work with dates and times in Windows PowerShell, you use the Get-Date

Cmdlet. It’s the Swiss Army Knife of Windows PowerShell dates and times;

you use it to find out the current date and time as well as to create date

objects to define any arbitrary date. To find out the current date and time,

you run Get-Date by itself without any parameters, like this:

Get-Date

DropBooksDropBooks

176 Part III: Complex Data Description and Sharing

When you run this Cmdlet by itself, it returns the current date and time and

displays it in a string format, as in this example:

Tuesday, March 18, 2008 10:14:42 PM

You can change how the date and time are displayed by using the -display-
hint, -format, and -uFormat switches. You use the -displayhint switch

when you want to obtain just the date or time portions of a given date and

time, as follows:

Get-Date –displayhint date
Get-Date –displayhint time

Getting the date and time
in a specific format
The -format and -uFormat switches let you format the date and time in

a very specific way. Although these switches are similar in functionality,

the difference is that -format uses .NET-based format specifiers, whereas

-uFormat uses Unix-style formatters.

One common use for dates is to generate unique filenames. Suppose you want

to generate a string that represents the current date in the format YYYYMMDD,

where YYYY is the four-digit year, MM is the two-digit month, and DD is the

two-digit date. This is how you do it using both format methods:

Get-Date –format yyyyMMdd
Get-Date –uFormat %Y%m%d

Both methods yield the same result, which is something like this:

20080318

Which one you choose boils down to convenience. Windows PowerShell

attempts to appeal to both existing Windows administrators and other

administrators who have a Unix background and seek to apply much of their

existing scripting knowledge to Windows. If you’re already familiar with Unix-

style date modifiers, simply using -uFormat to take advantage of that skill

set may make sense; otherwise, I feel that the .NET format is more consistent

with its definition (which makes me more inclined to use it). No one expects

you to know all the possible date modifiers, so I put together Table 13-1 to

list the most common ones.

Modifiers are case-sensitive. If you’re not getting the output you want, double-

check to make sure that you used the right case when specifying your modifier.

DropBooksDropBooks

177 Chapter 13: Going On a Date with PowerShell

Table 13-1 Get-Date Format Modifiers
.NET (-format) Unix (-uFormat) Description

d, %d %e Day of the month (1, 2 . . . 31). Not zero
padded.

Dd %d Day of the month (01, 02 . . . 310). Zero
padded.

Ddd %a Abbreviated day of the week (Mon,
Tue . . . Sun).

Dddd %A Full name of the day of the week
(Monday, Tuesday . . . Sunday).

%h %l Hour of the day based on 12-hour clock
without leading zeros (1, 2 . . . 12).

Hh %I Hour of the day based on 12-hour clock
with leading zeros (01, 02 . . . 12).

H, %H %k Hour of the day based on 24-hour clock
without leading zeros (0, 1, 2 . . . 23).

HH %H Hour of the day based on 24-hour clock
with leading zeros (00, 01, 02 . . . 23).

%m <none> Minute without leading zeros (0, 1,
2 . . . 59).

Mm %M Minute with leading zeros (00, 01,
02 . . . 59).

M, %M <none> Numeric month without leading zeros
(1,2 . . . 12).

MM %m Numeric month with leading zeros (01,
02 . . . 12).

MMM %b Abbreviated month name (Jan, Feb . . .
Dec).

MMMM %B Full name of the month (January,
February . . . December).

s, %s <none> Seconds without leading zeros (0, 1,
2 . . . 59).

Ss %S Seconds with leading zeros (00, 01,
02 . . . 59).

Tt %p AM/PM in capital letters.

Yy %y Two-digit year (98, 99, 00 . . . 10).

Yyyy %Y Four-digit year (1998, 1999, 2000, 2010).

DropBooksDropBooks

178 Part III: Complex Data Description and Sharing

 Many more modifiers are available, of course. All the .NET date and time

format modifiers are based on the System.Globalization.DateTime
FormatInfo class. You can find more information about this class on the

MSDN Web site (http://msdn2.microsoft.com/en-us/library/
system.globalization.datetimeformatinfo.aspx). To find more

Unix-format modifiers, you can take a look at the Get-Date detailed help text

(Get-Help Get-Date -detailed). A notes section at the end of that help

text lists all the Unix date and time modifiers.

Creating your own dates
Get-Date always returns the current date and time by default. Many times,

though, you need to define a date or time other than “right now.” Get-Date

gives you several ways to accomplish this task. The most straightforward

of all these methods is to define the date literally in string format, as in this

example:

$mydate = Get-Date “03/29/2008”

Notice that I define the date only. That’s fine! If you leave out any portion of

a date or time, Windows PowerShell fills in the rest for you. If you leave out a

time, Windows PowerShell uses midnight (12:00:00AM) as the time. Similarly, if

you define just the time, Windows PowerShell uses the current date as the date.

The other way to define your own dates is to use the date and time switches

of the Get-Date Cmdlet. You can define a very exact date and time down to

the second by doing something like this:

Get-Date –year 2008 –month 3 –day 29 –hour 14 –minute 23 –second 15

All these switches are optional, and if you omit any one of them, Windows

PowerShell assumes certain default values. When exact values aren’t speci-

fied, the year, month, and day default to the current year, month, and day,

and the hour, minute, and second default to 0.

The hour is based on a 24-hour clock, so 1pm is 13, 2pm is 14, and so on.

DropBooksDropBooks

179 Chapter 13: Going On a Date with PowerShell

Using Date Math (It’s Not
Just for Nerds)

Although being able to find out the current date and time or to define dates

and times in general is useful, more often than not, the reason you need to

do these things is to calculate duration or elapsed time. Calculating the time

difference between two dates gets complicated, because sometimes the cal-

culation isn’t as trivial as just subtracting one number from another. Do you

know how many days elapsed between February 3, 1983, and July 14, 2008,

for example? This operation isn’t exactly something that you can easily do in

your head.

Calculating time differences
You can calculate the difference between two dates very easily in Windows

PowerShell. All you need to do is subtract the two dates. Going back to the

problem I presented in the preceding section, you can perform the date cal-

culation by defining the two dates and subtracting one from the other to get

your answer:

$date1 = Get-Date –year 1983 –month 2 –day 3
$date2 = Get-Date –year 2008 –month 7 –day 14
$diff = $date2 - $date1

Now you have some value in $diff that represents the difference between

the two dates, but exactly what is this value? When you subtract two

DateTime objects, what you end up with is a Timespan object. If you output

the value of $diff, you see these values:

Days : 9293
Hours : 0
Minutes : 0
Seconds : 14
Milliseconds : 808
Ticks : 8029152148086132
TotalDays : 9293.00017139599
TotalHours : 223032.004113504
TotalMinutes : 233253.972977117
TotalSeconds : 802915214.808613
TotalMilliseconds : 802915214808.613

DropBooksDropBooks

180 Part III: Complex Data Description and Sharing

The best part of the Timespan object is that it already contains the value

of the time span in different units that you may care about. If you want to

know the number of days, you can just read the Days parameter by running

this code:

$diff.Days

If you want to know the number of milliseconds, you read the value of the

Milliseconds parameter. Hmm . . . wait. If you look at the values in the

$diff variable, something doesn’t seem quite right. Surely, more than 808

milliseconds elapsed between 1983 and 2008.

The days, hours, minutes, seconds, and milliseconds are actually part of

one value. In other words, Windows PowerShell (well, actually, the .NET

Framework) determined that 9,293 days, 0 hours, 0 minutes, 14 seconds,

and 808 milliseconds elapsed between those two dates. If you want to

know just the total number of days, hours, minutes, seconds, or millisec-

onds, use TotalDays, TotalHours, TotalMinutes, TotalSeconds, or

TotalMilliseconds instead.

Then there’s that other strange value. What are ticks, and why are there so

many of them? No, this value isn’t the number of tiny bloodsucking insects

that existed between those dates. A tick is equal to 100 nanoseconds and

is the smallest unit of time defined in the .NET Framework. The term isn’t

used often to describe time, but if you have to come up with time differences

with a granularity smaller than a millisecond, you have to use the tick count

instead.

Looking into the future
Sometimes, you need to find what the date or time will be based on a known

date and a given period. This scenario is actually fairly common. Suppose

that you’re creating a scheduler that runs a task every 15 days for a period

of 60 days. To figure out when these tasks will run, first you have to have a

reference date (in this case, the first time when the task is scheduled to run);

then you add 15 days to that date to get a new date. Do this a total of four

times, and you’ve got all the future dates when this task will run. In Windows

PowerShell, this function is implemented as follows:

$startDate = Get-Date “8/13/2008 11:00pm”
Write-Host (“Task runs on: “)
Write-Host $startDate
for($i = 15; $i -le 60; $i += 15) {
 Write-Host $startDate.AddDays($i)
}

DropBooksDropBooks

181 Chapter 13: Going On a Date with PowerShell

The first thing that the script does is establish a start date and time. Then it

uses a for loop to generate all other times when the task will run. The most

important part of this code is the date object’s AddDays method, which

adds whatever number of days you specify to the date object and returns a

date object representing the new date after all those days have elapsed.

You’re not limited to adding just days. Variations of the Add method that

allow you to add practically any date or time value you want. The plain Add

method, which takes a Timespan object as a parameter and adds whatever

duration you want, is specified in the timespan object. All the other Add

methods have very intuitive names:

 ✓ Add (adds a Timespan value)

 ✓ AddDays

 ✓ AddHours

 ✓ AddMilliseconds

 ✓ AddMinutes

 ✓ AddMonths

 ✓ AddSeconds

 ✓ AddTicks

 ✓ AddYears

You’re not limited to getting future dates. You can give the different Add meth-

ods a negative value so that PowerShell will calculate dates in the reverse

direction. If you want to know what date it was 8,723 hours ago, you can run

$now = Get-Date
$now.AddHours(-8723)

Checking whether it’s daylight saving time
Daylight saving time (DST) is a really practical concept, when you think

about it, because it lets humans make better use of the available sunlight.

Although the simple action of moving the clock forward or backward is

relatively simple (even though trying to get up on time when you have to

move forward an hour isn’t), it introduces another layer of complexity to the

already-complex concept of date math. When the United States decided to

extend its daylight saving time period, it created yet another scramble to cor-

rect computer code that rely on dates akin to Y2K but with less media hype.

Some applications have the DST logic built in; others rely on various pro-

gramming libraries or the operating system itself to provide this information.

DropBooksDropBooks

182 Part III: Complex Data Description and Sharing

Well, having gone through that process once, I highly recommend that you

don’t try to get smart and implement DST code yourself. Take advantage of

the built-in DST calculator in Windows PowerShell, which can perform all

the math for you. In fact, all the date math I discuss earlier in this chapter

is already DST–aware. If any new changes have to be made in the DST logic,

you’ll have to update Windows PowerShell only once; then all your other pro-

grams will be aware of the new dates.

One other piece of information you may want to know is whether a date

occurs during DST. Windows PowerShell has that task covered as well. You

can use the IsDaylightSavingTime method of the date object, which

returns true if that date occurs during DST. This code snippet results in the

output false followed by true:

$date1 = Get-Date “1/3/2008”
$date2 = Get-Date “4/23/2008”
$date1.IsDaylightSavingTime
$date2.IsDaylightSavingTime

Dealing with Time Zones
If DST and leap years aren’t enough, add time zones to the mix, and you’ve got

yourself a really exciting date. Unless you work for a global company or design

your Windows PowerShell scripts to connect to various resources in different

time zones, you probably aren’t too concerned about time zones. After all, if

you care about dates and times only in the context of the current time zone,

the standard date class already gives you this information for free.

Suppose that you have a script that’s designed to run on several computers,

and one computer may be in a different time zone from the others. You want

to make sure that the date and time aren’t based on local times but on the

date and time at your headquarters in New York. Unfortunately, the date

class can’t help you with this operation. Instead, you must use the Timezone

class to access this kind of information.

Standardizing with Coordinated
Universal Time
The best way to deal with times and time zones is to base local times on a

standard clock known as Coordinated Universal Time (UTC), which used to

be called Greenwich Mean Time (GMT). This standard clock is based on the

concept of time’s being defined in relation to the local time at the Greenwich,

England (prime meridian, 0 degrees longitude). As you move west from this

location, the local time shifts by a negative amount; moving east shifts time

by a positive value.

DropBooksDropBooks

183 Chapter 13: Going On a Date with PowerShell

New York, for example, is –5 hours from UTC, which means that whatever

time it is in Greenwich, England, the local time in New York is Greenwich

time minus 5 hours. Tokyo, on the other hand, is +12 hours from UTC, which

means that it’s ahead of Greenwich time by 12 hours. These offsets are fixed,

determined by the longitude of a location in relation to the prime meridian.

As you and I know, however, time isn’t fixed because you also have to factor

in things like DST. Because different countries define the beginning and end

of DST differently (if at all), DST acts as an adjustment factor when you’re

trying to work out the time differences between two geographic locations.

To see how this process works, consider New York, which is UTC –5:00, and

Stockholm, Sweden, which is UTC +1:00. The time difference between New

York and Stockholm is 6 hours — most of the time. Because New York starts

DST earlier than Stockholm does and ends it later, for several weeks of the

year, New York is on DST but Stockholm isn’t. During these weeks, the time

difference isn’t 6 hours but 5 hours, because New York time jumps ahead

by 1 hour before Stockholm does.

If you can determine the UTC offsets of any two locations and also determine

whether those locations are observing DST, you can compare the two times

by following these steps:

 1. Get the UTC offset of the first location (–5 for New York, for example).

 2. Add to the offset a DST adjustment factor (+1 if it’s DST in this location

and 0 otherwise).

 3. Get the UTC offset of the second location (+1 for Stockholm, for example).

 4. Add to this offset a DST adjustment factor (+1 if it’s DST in this location

and 0 otherwise).

 5. Subtract the value you got in Step 2 from the value you got in Step 4.

 What you end up with is the true time difference between the two

locations.

Using the TimeZone class
The TimeZone class gives you access to the world of using time zones in

Windows PowerShell. This class has plenty of very useful methods that, when

used in conjunction with date objects, can give you all that you need to calcu-

late time-zone differences. You can find out what time zone you’re in by using

this code snippet:

$tz = [timezone]::CurrentTimeZone

DropBooksDropBooks

184 Part III: Complex Data Description and Sharing

The $tz variable now contains a timezone object that reflects the current

time zone. You can see the name of this timezone object by running

$tz.StandardName
$tz.DaylightName

Notice that a timezone object has two names: one for use during standard

time (Eastern Standard Time, for example) and one for DST (Eastern Daylight

Time, for example). The display names are fine, but what you’re really inter-

ested in is the UTC offset, because it’s a numerical value that you can use to

compare time zones. This is how you get the current UTC offset:

$tz = [timezone]::CurrentTimeZone
$d = Get-Date
$tz.GetUTCOffset($d).Hours

If you’re in New York when you run this command sequence, you’ get the

value –5 because New York is in the UTC –5:00 time zone. If the current date

or the date you give to the GetUTCOffset method occurs during DST, this

code returns –4 instead. But wait — aren’t UTC values constant? Yes, they

are on paper, but what’s happening is that Windows PowerShell (actually,

.NET) is saving you some legwork. Rather than forcing you to calculate UTC

offset and factoring in DST, it does all the work for you.

When you get the UTC offset of a time zone by using the GetUTCOffset

method, this value already includes the DST adjustment factor, so it changes

dynamically based on whether the time zone is observing DST.

Unfortunately, Windows PowerShell isn’t capable yet of determining the time-

zone information in a time zone other than its own. As a result, you have to

use some other method to determine the UTC offset of the other location

(such as looking it up online). When you have the two values, you can calcu-

late the time difference between them.

DropBooksDropBooks

Part IV
Controlling Where

and How You
Operate

PowerShell

DropBooksDropBooks

In this part . . .

It’s now time to start really harnessing the power of

Windows PowerShell 2. This part covers some really

cool new features in Windows PowerShell. Chapter 15

gives you the ability to run commands on a remote com-

puter and even run multiple commands or scripts simulta-

neously in the background. I like to call these features

force multipliers because they really let you do more

things simultaneously, which means getting things done

faster with very little additional effort. If you like utilizing

your computer to free up more of your time, you’ll love

these features. I show you how to make your scripts work

within an international setting in Chapter 16. Trying to

debug a script is usually a real pain, but Chapter 17 makes

finding and squashing those bugs much easier.

DropBooksDropBooks

Chapter 14

Using Functions to
Divide and Conquer

In This Chapter
▶ Modularizing code using functions

▶ Controlling visibility using scopes

▶ Making functions globally available

▶ Creating your own command using Advanced Functions

It’s very rare for any of us to do something only once, especially when

it has anything to do with computers. When writing your Windows

PowerShell scripts, you’ll eventually find that you repeat code over and over.

Although that’s good exercise for your fingers, it really is counterproductive.

Modularizing your code into functions not only saves you tons of time, but

also makes your code more robust by making sure that tried-and-tested code

is reused so that you don’t have to rewrite everything from scratch every

time and possibly introduce unnecessary errors.

In this chapter, you harness the real power of scripting by creating reusable

code blocks called functions (and their slightly upgraded version, Advanced

Functions). Functions allow you to accomplish a lot without writing lots

of repetitive code, and often functions makes troubleshooting or making

changes to existing scripts a lot easier. So if you’re looking for ways to save

you more time in the future, keep reading!

Reusing Code Using Functions
Imagine a simple task such as displaying the words I want a nice juicy steak
right now on the screen. You already know that you use Write-Host to dis-

play text. If your task is to display that text 100 times in a row, you also know

that you can put the text in a loop. This method works great when you need

to repeat something many times in sequence, but it doesn’t work so well

if you need to repeat a section of code more than once but not necessarily

repeat it immediately.

DropBooksDropBooks

188 Part IV: Controlling Where and How You Operate PowerShell

When you want to have a piece of code that you’ll reuse again and again, it

often makes sense to put that code in a function. A function is like a black box

with inputs and outputs. When you write a function, you generally design it in

such a way that the user of the function doesn’t need to know how it works.

You just define what the inputs should be and what the function does, along

with any values it might return.

Consider the remote control for your TV set. When you press the On button,

you usually don’t want to know the intricate details of how the infrared signal

is sent to the TV, how the TV then activates a relay to power on its circuitry,

and so on. You just want the TV to turn on. In effect, the On button is like a

function. You press the button, and it does some magic and performs some

action — in this case, turning on the TV.

Creating your first function
Functions consist of four parts: the function’s name, input parameters, body,

and return values. Only the function name and its body are required. Here’s

a function called MyUselessFunction that does nothing useful (actually, it

does nothing at all):

function MyUselessFunction{
 #Here’s the body that contains nothing if you want.
}

 When entering commands in the command line that span multiple lines,

Windows PowerShell goes into a multiline prompt with each subsequent line

preceded by >>. You can keep entering commands as you would in a script,

and when you’re ready to run the multiline command, just press Enter one

more time.

You create a function by using the function keyword followed by the name

of the function. The stuff between the curly braces is the body of the func-

tion, which defines what the function does. The body can contain whatever

you want, even if it’s nothing like the example in MyUselessFunction.

A useless function is about as helpful as being stuck in a desert with

nothing but a million dollars. Sure, it’s great to see, but it won’t help you

survive. Here’s a more useful function that uses Windows Management

Instrumentation (WMI) to query for, and then display, the computer’s operat-

ing system details:

function GetOSInfo{
 $osinfo = Get-WmiObject Win32_OperatingSystem
 Write-Host ($osinfo.caption + “ “ + $osinfo.version + “ Service Pack

“ + $osinfo.ServicepackMajorVersion + “.” + $osinfo.
ServicePackMinorVersion)

}

DropBooksDropBooks

189 Chapter 14: Using Functions to Divide and Conquer

If you enter this code in the Windows PowerShell command line or put it

inside a Windows PowerShell script by itself, you’ll find that it doesn’t do

anything or display anything at all. This is okay, because all you’ve done is

define the function. Defining this function simply tells Windows PowerShell

about the function you want to create and what it’s supposed to do. When

you actually want to use the function, you just need to run

GetOSInfo

On a typical Windows Vista computer running Service Pack 1, this function

displays

Microsoftr Windows VistaT Ultimate 6.0.6001 Service Pack 1.0

Note: The extra r and T after Microsoft and Vista are for the copyright

and trademark symbols, respectively, which can’t be displayed properly in a

command shell.

 Before you can use a function in Windows PowerShell, you must define it. If

you want to define a function in a script, the definition (code) for the function

must come before you use it the first time. This rule is especially important

to keep in mind if you have some experience with VBScript, because unlike

Windows PowerShell, VBScript allows you to define functions anywhere you

want within the script.

Defining parameters
Most of the time, you create functions after you realize that you keep repeat-

ing a section of code with the only difference being some changes in a few

variables. In the case of querying for operating system information, you may

want to query different computers at different times. You can change the

GetOSInfo function to accept a parameter that represents the name of the

computer you want to query, as in this example:

function GetOSInfo($computername){
 $osinfo = Get-WmiObject Win32_OperatingSystem -computer $computername
 Write-Host ($osinfo.caption + “ “ + $osinfo.version + “ Service Pack

“ + $osinfo.ServicepackMajorVersion + “.” + $osinfo.
ServicePackMinorVersion)

}

If you want to query the operating system name and version of another com-

puter on your network (such as mail01), you can run

GetOSInfo mail01

DropBooksDropBooks

190 Part IV: Controlling Where and How You Operate PowerShell

 Unlike other programming or scripting languages, Windows PowerShell

requires you to put a space before each parameter when you pass parameters

to a function. You don’t enclose the parameter in parentheses, as in

GetOsInfo(mail01). If your function takes more than one parameter, you

separate the values with spaces, as in Myfunction param1 param2
param3.

The new GetOSInfo function just has a few changes. The most obvious one

is in the main function definition:

function GetOSInfo($computername)

This code tells Windows PowerShell that the GetOSInfo function takes one

parameter and that within the function, the value will be referred to as $com-
putername. Now that GetOSInfo has the name of the computer you want

to query, the other change in the function makes use of this newly defined

parameter:

$osinfo = Get-WmiObject Win32_OperatingSystem -computer $computername

I added the -computer $computername parameter to Get-WmiObject and

successfully converted this function to support querying other computers.

Defining more than one parameter
You can define more than one parameter, if you want. You just need to sepa-

rate the parameters with commas, like this:

function FullName($firstname, $lastname) {
 Write-Host ($firstname + “ “ + $lastname)
}

You can also define your parameters in a different way. Instead of putting the

parameter list between the function name and the first curly brace, you can

define the parameter list inside the body of the function, like this:

function FullName{
 param($firstname, $lastname)
 Write-Host ($firstname + “ “ + $lastname)
}

So far, I’ve been using variable names in the parameter list. Windows

PowerShell treats these variables as variants (variables that don’t have a data

type) so you can give them any values you want. This arrangement is useful

but can cause bugs in your code if you suddenly get some data type that

you didn’t expect. The best solution is to define the type for each input

parameter explicitly by prefixing each parameter name with the data type

enclosed in square brackets. This version of the FullName function makes

sure that both parameters given to it are of the type string (or at least can

be converted to string) before the function proceeds:

DropBooksDropBooks

191 Chapter 14: Using Functions to Divide and Conquer

function FullName{
 param([string]$firstname, [string]$lastname)
 Write-Host ($firstname + “ “ + $lastname)
}

Working with default parameters
The modifications I made in the GetOSInfo function in the “Defining

Parameters” section, earlier in this chapter, allow users of the function to

specify the computer name of whatever host they want to get the OS informa-

tion from. The annoying thing about these modifications is that now, if I just

want to query my own OS information, I either have to give the function my

computer name explicitly or put in a dot (.), which in WMI means the local

host. The good news is that you can define default values for each parameter

so that if a value isn’t specified, the default value is assigned automatically.

Here’s how GetOSInfo looks with a default value defined (making sure that a

string is provided, of course):

function GetOSInfo([string]$computername = “.”){
 $osinfo = Get-WmiObject Win32_OperatingSystem -computer $computername
 Write-Host ($osinfo.caption + “ “ + $osinfo.version + “ Service Pack

“ + $osinfo.ServicepackMajorVersion + “.” + $osinfo.
ServicePackMinorVersion)

}

The key is the change in the main function definition:

function GetOSInfo([string]$computername = “.”)

In addition to making sure that $computername is a string, PSH assigns the

value “.” to this variable. This value is used only if you run GetOSInfo with-

out any parameters; otherwise, if you give the function a computer name,

that value takes precedence and is assigned to $computername in lieu of the

default value.

Returning values
So far, all the function examples in this chapter simply display some informa-

tion onscreen. Most of the time, however, this result isn’t what you want.

Instead, you want to call a function with some parameters and get back a

value that you’ll either use or manipulate within your script.

You can return a value from a function by using the return keyword fol-

lowed by the value you want to return. Here’s a modified version of the

FullName function that returns the full name string rather than just display-

ing it onscreen:

DropBooksDropBooks

192 Part IV: Controlling Where and How You Operate PowerShell

function FullName([string]$firstname, [string]$lastname) {
 return ($firstname + “ “ + $lastname)
}

Interestingly enough, if you call the FullName function by itself with the

appropriate parameters, it still behaves the way it did before, displaying the

full name onscreen. In other words, running

FullName “Steve” “Seguis”

results in this output:

Steve Seguis

You get this output because by default, when Windows PowerShell gets a

value back from a function that you don’t use by assigning it to some vari-

able, that return value is simply displayed onscreen. It’s really only a coinci-

dence that the behavior of this new version of the FullName function is the

same as that of the old one. The big difference is that now you can store the

result in a variable for use later, as in this example:

$name = FullName “Steve” “Seguis”
Write-Host “I can do something now...then display”
Write-Host $name

This code outputs

I can do something now...then display
Steve Seguis

This version is different from the old version, which would have displayed

the name immediately before continuing to the next line of code.

Sometimes, the value you want to return is a collection of values rather than

a simple single value. If the value generated inside your function is already

a collection, you can simply return that collection. Here’s a simple function

that does a directory listing of everything in the Windows directory and

returns that result because the return value of Get-ChildItem in this case is

already a collection:

function DirWin{
 return Get-ChildItem $env:windir
}

 It’s best to use environment variables when getting things like the path to

the Windows directory, because you can’t always assume that the result is

going to be C:\Windows. To get any environment variable’s value, just use

$env:<environment variable name>.

DropBooksDropBooks

193 Chapter 14: Using Functions to Divide and Conquer

If you’re retrieving multiple values from within your function, and you want

to return a collection of values, one easy way is to use the Write-Output

method. Contrary to what you might think, Write-Output doesn’t display

the value onscreen when it’s used within a function. Instead, it adds the item

to an unnamed collection that is returned by the function when it completes.

This new function uses Write-Output to create, and eventually return, a

collection from the function that contains just the names of files and folders

directly below the Windows folder:

function DirWinNames{
 $dir = Get-ChildItem $env:windir
 foreach($item in $dir) {
 Write-Output $item.name
 }
}

You can use the result of this function just as you would use any collection,

such as looping through it with a foreach loop, like this:

$contents = DirWinNames
foreach($item in $contents) {
 Write-Host $item
}

Using Scope
 Scope is a concept that often confuses new programmers because it’s not

entirely intuitive and sometimes is difficult to explain. For this reason, scope

issues are among the top sources of bugs in scripts and are often frustrating

to track down. Make sure that you pay attention to this section and reread it if

things aren’t clear the first time around.

Understanding scope rules
Scope defines the boundaries that control the visibility of variables from a

given context. From the perspective of a function, Windows PowerShell has

three scopes:

 ✓ Global scope: Visible throughout the entire shell

 ✓ Script scope: Visible only from within the script during its execution

 ✓ Private scope: Visible only from within the function

What exactly do I mean by visible? To get a better understanding of how

scope works, take a look at Figure 14-1. Only the variables that are defined,

either in your current scope or its parent (container), are visible to you.

DropBooksDropBooks

194 Part IV: Controlling Where and How You Operate PowerShell

Parents can’t see the variables in any of their children. In other words, if

you’re in the Private scope, you can see and access the variables that exist

in Script scope and Global scope, in addition to anything you define in the

Private scope. If you’re in the Script scope, however, you can see variables in

the Global scope but not in the Private scope.

Figure 14-1:
The scope

diagram.

Have a look at the following script, which implements what Figure 14-1 shows.

First, assume that $gs1 = “Global Variable” has been defined at the

Windows PowerShell prompt, which immediately puts it into Global scope:

testscript.ps1
assumes $gs1 = “Global Variable” has been defined in the Windows PowerShell

console.

function MyPrivFunction {
 Write-Host “Inside Function...”
 $ps1 = “Private Variable”
 Write-Host $ps1
 Write-Host $ss1
 Write-Host $gs1
 Write-Host “Function Done...”
}

Write-Host “Inside Script...”
$ss1 = “Script Variable”
Write-Host $ss1
Write-Host $ps1
Write-Host $gs1

MyPrivFunction

Write-Host “Script Done...”

DropBooksDropBooks

195 Chapter 14: Using Functions to Divide and Conquer

Running this script results in the following output:

Inside Script...
Script Variable...

Global Variable...
Inside Function...
Private Variable...
Script Variable...
Global Variable...
Function Done...
Script Done...

As you can see, variables defined both within the script and globally are all

accessible from within the MyPrivFunction function, and global variables

are also accessible from within the script. Notice, though, that a line is miss-

ing between Script Variable... and Global Variable... in the

output. This missing line is caused by the Write-Host $ps1 line within the

script. Scope rules prevent Private scope access from within Script scope, so

in the main body of the script, you can’t access variables within a function.

Some really technical facts explain this situation, but you can come up with

the reason just by thinking. The script can’t access variables in a function

because those variables don’t really exist until the function is called, and

they exist only while the function is running. When the function is done, vari-

ables defined within the function are no longer needed and cease to exist.

The same holds true for variables defined in a script. Those variables don’t

exist until the script is running, so you shouldn’t be able to access a variable

in the Script scope from the Global scope.

Watching out for name overlap
The interesting aspect of scope is that it allows you to use the same vari-

able name more than once, provided that the variable names are in different

scopes. Consider this code snippet:

function scopetest{
 $myvar = “Jeremy”
 Write-Host $myvar
}

$myvar = “Royski”
Write-Host $myvar
scopetest

DropBooksDropBooks

196 Part IV: Controlling Where and How You Operate PowerShell

This code generates the following output:

Royski
Jeremy

Even though I used $myvar twice, there’s no problem because of scope.

Within the scopetest function, $myvar contains the string “Jeremy”, but

outside the function, $myvar contains the string “Royski”. The variables

have the same names, but internally, they’re completely separate variables.

This behavior often leads to some confusion and in some cases to bugs.

Here’s some code that attempts to change the value of the variable $name

from within a function:

function changename{
 $name = “Bradley”
}
$name = “Jason”
Write-Host $name
changename
Write-Host $name

Because functions can see variables in their parent scope (Script scope), you

may think that simply assigning a new value to $name will change its value,

but if you run this code snippet, you’ll find that the output is “Jason” both

times. Why hasn’t the name changed? The reason is that although you can

read the value of a variable in a parent’s scope, you can’t assign a value just

by using the variable’s name. In this case, instead of assigning the string

“Bradley” to $name, the function simply creates a new Private scope vari-

able called $name and gives it a value of “Bradley”. Nothing is ever touched

at the parent scope.

This mistake is a very common one; even experienced programmers and

script writers sometimes make this mistake. If this code snippet were part

of some much larger piece of code, it might be almost impossible to find and

would result in some very unexpected behavior of the code. If you really

want to change the value of a variable outside the current scope, you have

to use a slightly different syntax. Here’s a modified version of the preceding

code snippet that changes the value of $name correctly at the script level:

function changename{
 $script:name = “Bradley”
}
$name = “Jason”
Write-Host $name
changename
Write-Host $name

DropBooksDropBooks

197 Chapter 14: Using Functions to Divide and Conquer

Now the output is

Jason
Bradley

 To change the value defined in the Script scope from a Private scope, use the

format $script:<variable_name>=<new_value>. To change the value

defined in the Global scope from either the Script or Private scope, use the

format $global:<variable_name>=<new_value>.

Defining functions in Global scope
The best thing about functions is that they really help you modularize your

code and allow you to reuse frequently used code. One way is to copy and

paste the function code between scripts, but if you think you’ll use the

function often, it makes much more sense to define the function at Global

scope level. Doing so makes the function available not only in the Windows

PowerShell console, but also to any script you run from the console.

You have three options for defining a function at Global scope level:

 ✓ Manually: You type the function definition manually in the Windows

PowerShell console.

 ✓ Profile script: You can put the code for your function in your profile

script so that every time you open a new shell, the function will be

defined automatically.

 ✓ Dot-sourcing: You put the code for the function in a script and dot-

source it.

 In dot-sourcing, you simply put the code in a script file such as C:\scripts\
myfunctions.ps1. Then you run . c:\scripts\myfunctions.ps1, and

the script runs in Global scope, which means that any variable or function you

define in it will persist for the duration of the console.

Creating Your Own Cmdlets —
Advanced Functions!

Cmdlets are typically written in the C# programming language but can also

be written in VB.NET. Don’t worry — I’m not going to ask that you become

skilled in either of these programming languages. One of the coolest new fea-

tures to be introduced with Windows PowerShell 2 is Advanced Functions.

DropBooksDropBooks

198 Part IV: Controlling Where and How You Operate PowerShell

Advanced Functions provide a way for you to write functions that behave

like Cmdlets in the form of PowerShell scripts rather than the compiled C#

or VB.NET methods. What this really means for you is that if you can write a

Windows PowerShell script, you can most certainly write your own Advanced

Functions. This feature has great possibilities because it allows you to create

a library of Cmdlets that you can use yourself and also give to other people.

Understanding the structure of
Advanced Functions
Advanced Functions have a very specific structure, one that’s similar to the

structure required by regular Cmdlets created in C# or VB.NET, because just

like Cmdlets, Advanced Functions must define their behavior in a predict-

able format so that they can work seamlessly together. Look at the advanced

function in Listing 14-1. It doesn’t do much, but it demonstrates how the

Advanced Functions concept works.

Listing 14-1: Color-Coded Output Using Advanced Functions
#REQUIRES -Version 2.0
function Write-Yellow
{
 <#
 .Synopsis
 Writes some text in yellow foreground color
 .Description
 This function displays the text you provide to
 The screen using a yellow foreground color.
 .Parameter out
 String to display
 .Example
 PS> Write-Yellow “Show this in yellow!”
 .Link
 about_functions
 about_functions_advanced
 about_functions_advanced_methods
 about_functions_advanced_parameters
 .Notes
 Author: Steve Seguis
 #>
 [CmdletBinding()]
 Param
 (
 [Parameter(mandatory=$true,ValueFromPipeline=$true)]
 [Alias(“out”)]
 [String]$OutString
)

DropBooksDropBooks

199 Chapter 14: Using Functions to Divide and Conquer

Listing 14-1: Color-Coded Output Using Advanced Functions
 Begin
 {
 Write-Host “Hello, Write-Yellow starting up!”
 }

 Process
 {
 Write-Host $OutString -foregroundcolor “Yellow”
 }

 End
 {
 Write-Host “Bye bye!”
 }
}

You should always start a script with #REQUIRES –Version 2.0 at the

top, because this script doesn’t work with version 1 of Windows PowerShell.

The script defines a function called Write-Yellow in the typical verb–noun

format, such as Get-Help. The first section, starting with <# and ending in

#>, is a feature called AutoHelp. If you run Get-Help against this script, the

AutoHelp feature displays the contents between those two delimiters in the

window, which makes creating help for your scripts much easier.

Defining attributes
What differentiates a regular function from an advanced function is the use

of the next piece, called the CmdletBinding attribute. You can define up to

four distinct attributes for the CmdletBinding attribute:

 ✓ SupportsShouldProcess: When you specify the

SupportsShouldProcess attribute, it enables the -confirm and

-whatif parameters of the Cmdlet, which prompts the user before the

script makes any changes to the system.

 ✓ DefaultParameterSet: You use the DefaultParameterSet attri-

bute to define which parameter set the function should use if that set

can’t be determined automatically. This attribute is typically used if the

function supports multiple syntaxes and the parameters aren’t unique.

DropBooksDropBooks

200 Part IV: Controlling Where and How You Operate PowerShell

 ✓ ConfirmImpact: The ConfirmImpact attribute is used to determine

when the action of the Cmdlet should be confirmed by a call to the

ShouldProcess method. This setting is used in combination with

the SupportsShouldProcess attribute and runs ShouldProcess

only if this value is equal to or greater than the value of the shell’s

$ConfirmPreference variable.

 ✓ snapin: The last attribute you can define is snapin. Here, you define

the name of the snap-in used to register the Cmdlet. Snap-ins provide

a way for the custom Cmdlets to be loaded into a Windows PowerShell

instance.

You can use a DefaultParameterSet called MyValues, for example, by

defining it as follows:

[CmdletBinding(DefaultParameterSet=’MyValues’)]

You use commas to separate the property name and values, if you have more

than one, like this:

[CmdletBinding(SupportsShouldProcess=$true,ConfirmImpact= “Medium”)]

In practice, though, 99 percent of the time you’re going to use this attribute with

no parameters, as I show you in the Write-Yellow example in Listing 14-1:

[CmdletBinding()]

Defining parameters
Next, you must define the parameters that the function will accept. When you

define a parameter, you can set several attributes for each parameter (see

Table 14-1).

Table 14-1 Parameter Metadata Attributes
Property Name Syntax Purpose

Mandatory [Parameter
(mandatory=$true)]

A value is required for
this parameter.

Position [Parameter
(Position=<Int32>]

The position of this
parameter on the com-
mand line.

Alias [Alias(<String[]>)] Another name that can
be used to refer to this
parameter.

DropBooksDropBooks

201 Chapter 14: Using Functions to Divide and Conquer

Property Name Syntax Purpose

Parameter
SetName

[Parameter(Parameter
SetName=<String>)]

The name of the param-
eter set this belongs
to. Use this attribute
when you have multiple
parameters with the
same name to accom-
modate different syn-
taxes for the Cmdlet,
depending on use.

ValueFrom
Pipeline

[Parameter(ValueFrom
Pipeline=$true)]

This Cmdlet can accept
input from a pipeline.

ValueFrom
Pipeline
ByProperty
Name

[Parameter(ValueFrom
PipeLineByProperty
Name=$true)]

This parameter can
accept input from a
property of a pipeline
object. You use this
attribute if you want to
map the input property
of the pipeline to a
property of the Cmdlet
with the same name. If
the input has a “name”
property, for example,
and this Cmdlet also has
a “name” parameter,
these two values will be
paired.

ValueFrom
Remaining
Arguments

[Parameter(ValueFrom
RemainingArguments=
$true)]

This parameter accepts
any arguments that are
not mapped to other
parameters. Use this
attribute if you want
to take in an unknown
number of values from
the command line and
store it as a list of items,
such as a list of com-
puter names.

HelpMessage [Parameter(Help
Message=<String>)]

The text to display as
help for this parameter.

(continued)

DropBooksDropBooks

202 Part IV: Controlling Where and How You Operate PowerShell

Table 14-1 (continued)
Property Name Syntax Purpose

AllowNull [AllowNull()] This property can be
null (have no value). You
can use this attribute if
you have a mandatory
parameter in which null
is a valid value.

AllowEmpty
String

[AllowEmpty
String()]

This property can have
an empty string (blank
text) assigned to it even
though it’s mandatory.

AllowEmpty
Collection

[AllowEmpty
Collection()]

This property can have
an empty collection even
though it’s mandatory.

Validate
Count

[ValidateCount(
<Int32>,<Int32>)]

This property validates
the minimum and
maximum number of
arguments supported
by this parameter. The
first number defines
the minimum, and the
second number defines
the maximum.

Validate
Length

[ValidateLength(
<Int32>,<Int32>)]

This property validates
the minimum and
maximum length of the
parameter value.

Validate
Pattern

[ValidatePattern
(<String>)]

This property compares
the parameter value
to the string pattern.
You can use a regular
expression to define the
pattern that this property
value must match. A
regular expression is a
sequence of characters
describing a pattern,
such as “[0-9]” to
mean any digit from 0
through 9.

DropBooksDropBooks

203 Chapter 14: Using Functions to Divide and Conquer

Property Name Syntax Purpose

Validate
Range

[ValidateRange
(<Int32>,<Int32>)]

This property validates
the minimum and
maximum values of the
parameter.

Validate
Script

[ValidateScript
(<ScriptBlock>)]

This property specifies
a script that’ll be used to
validate the parameter.
Use this attribute to
perform more complex
validation of the param-
eter value.

Validate
Set

[ValidateSet
(<String[]>]

This property defines a
set of values that’s valid
for this parameter.

Validate
NotNull

[Validate
NotNull()]

This parameter can’t be
null.

ValidateNot
NullOrEmpty

[Validate
NotNullOr
Empty()]

This parameter can’t be
null, an empty string, or
an empty array.

The table can be a bit confusing, but in practice, it’s very straightforward.

Suppose that you define a mandatory string parameter called ServerName

that you also want to reference as “SRVNAME” or “SRV” and that has a mini-

mum length of 3 characters and a maximum of 15:

Param
(
 [Parameter(mandatory=$true)]
 [Alias(“SRVNAME”,”SRV”)]
 [ValidateLength(3,15)]
 [String]$ServerName
)

All you need to do is enter each parameter property you want to define on

a separate line, along with any necessary values, such as the minimum and

maximum values in the case of ValidateLength. The exception is that

some attributes (such as those specifying whether a parameter is manda-

tory) have to be specified with the Parameter function. You see which

parameters need additional attributes if you look at the examples in Table

14-1. If you want to define more than one kind of attribute, you separate the

attributes with a comma, like this:

[Parameter(mandatory=$true,position=0)]

DropBooksDropBooks

204 Part IV: Controlling Where and How You Operate PowerShell

Using methods
Each function can also define three methods (a collection of code that per-

forms some function based on a given set of input) to define what it actually

does. These methods are

 ✓ Begin{}: The Begin{} method is run once for each instance of this

Advanced Function. It’s typically used to facilitate initialization routines.

 ✓ Process{}: The Process{} method is called for each input of the

Advanced Function. If the Advanced Function receives 100 lines of input

(such as the output of a previous command in a pipeline), it is called 100

times (once for each line). This method is usually defined for Advanced

Functions when you expect to receive input from a pipeline and need

to define how to handle each of the inputs it receives. I talk more about

pipelines in Chapter 7.

 ✓ End{}: The End{} method is called once, when the Advanced Function

terminates. You use this method to define any postprocessing tasks you

want the Advanced Function to do before quitting.

 If you have some knowledge of object-oriented programming, you can loosely

think of Begin{} and End{} as being the constructor and destructor of a

class, respectively. The Process{} method is a single function that does the

actual work on the data flowing into it.

I put some code in the Begin{} and End{} methods in Listing 14-1 only to

demonstrate how they work. If you don’t want to do anything specific when a

Advanced Function starts or terminates, you can omit these methods.

Running Advanced Functions
Now that you have an advanced function to play with, follow these additional

steps to start using it:

 1. Save the Write-Yellow Advanced Funtion code in a file called

myscriptcmdlet.ps1.

 2. Open Windows PowerShell, and run . C:\scripts\myscriptcmd-
let.ps1.

 This code assumes that you saved the script in a scripts directory

at the root of the C: drive. Replace C:\scripts with the path to your

script. Note that I use a dot followed by a space and then the path to the

script.

 3. Test the script by typing Write-Yellow -OutString “Does this
work?” at the PSH prompt and pressing Enter.

DropBooksDropBooks

205 Chapter 14: Using Functions to Divide and Conquer

Running the Write-Yellow command in Step 3 generates the following

output:

Hello, Write-Yellow starting up!
Does this work?
Bye bye!

It works wonderfully. The code within the Begin{} method gets called first,

followed by the code within the Process{} method, which displays the

value you provided on the command line. The command finishes by execut-

ing the code in the End{} method.

 You may be wondering about that strange Step 2, in which you have to use

a dot followed by a space and then the script name. This process is called

dot-sourcing the script; it makes any variable, function, or whatever else you

define in your script globally available for that session.

If you don’t dot-source a script that defines a Cmdlet and simply run the

script as is, when you try to run your newly created Cmdlet, you’ll get an

error message saying that it’s not a recognized command. This error occurs

because the Cmdlet is defined only while the script is running. As soon as the

script ends, that Cmdlet definition is removed. Dot-sourcing it tells Windows

PowerShell that you want to make the Cmdlet available even after the script

finishes executing.

Another way to make your advanced functions available is to put this code in

your profile, because your profile script is automatically dot-sourced when

you open a Windows PowerShell instance!

Because you defined an alias for the OutString parameter, you can also use

the following command to display “Does this work?” onscreen:

Write-Yellow -out “Does this work?”

One of the most interesting parameter properties you set in Listing 14-1

for the OutString parameter is ValueFromPipeline. This property changes

the behavior of the Write-Yellow Cmdlet a little bit by automatically taking the

input and assigning it to the OutString parameter. The side effect of this prop-

erty is that you can actually run Write-Yellow without having to specify the

parameter name explicitly, as in this example:

Write-Yellow “Does this work?”

This feature really shines in a pipeline when it receives input from another

command. Consider this command sequence:

Get-ChildItem C:\ | Write-Yellow

DropBooksDropBooks

206 Part IV: Controlling Where and How You Operate PowerShell

The first command, Get-ChildItem, lists the contents of the given path,

which in this case is the root of the C:\ drive. Then this result is piped to

Write-Yellow via the pipe character (|). This command sequence gener-

ates the output in Figure 14-2.

Figure 14-2:
The result

of piping the
output of Get-
ChildItem to

the Write-
Yellow

advanced
function.

This example really demonstrates how the three advanced function methods

come into play. Because Write-Yellow appears only once on the command

line, the code has only one instance of the Write-Yellow Cmdlet, and the

Begin{} method is called once as usual. For each item returned by Get-
ChildItem C:\, the Process{} method is called. Because the code uses

the ValueFromPipeline property, each object returned by Get-ChildItem

gets assigned to the OutString parameter, and for each object, the function

displays this value to the console in yellow. When Write-Yellow finishes pro-

cessing all the objects from Get-ChildItem, it runs the End{} method.

Out of curiosity, you can try piping the output of Write-Yellow to another

instance of Write-Yellow, as follows:

Get-ChildItem C:\ | Write-Yellow | Write-Yellow

The output of this command sequence and the previous sequence where the

output of Get-ChildItem was being passed to only one instance of Write-
Yellow is that there is an additional “Hello, Write-Yellow start-
ing up!” line at the beginning of the output and an additional “Bye bye!”

line at the end of the output. This occurs because two instances of Write-
Yellow appear on the line, and the Begin{} and End{} methods get called

once for each instance.

DropBooksDropBooks

207 Chapter 14: Using Functions to Divide and Conquer

Finding uses for Advanced Functions
As a script writer, you’ll find that advanced functions are excellent ways to

create reusable commands for yourself and even for other people. You can

create a whole library of script Cmdlets and distribute them throughout

your organization to build on custom business processes. You can create

an advanced function to provision user accounts, for example, and call it

Create-MyCompanyUser.

Another good use of advanced functions is creating a wrapper around an

existing Cmdlet. The Write-Yellow advanced function is an example of cre-

ating a wrapper around what is essentially Write-Host to perform a special-

ized out routine. If you write a Write-HostError Advanced Function that

takes some text and displays it onscreen in red, it’ll be far easier to use that

Advanced Function than using Write-Host with the -foregroundcolor

parameter over and over again.

DropBooksDropBooks

208 Part IV: Controlling Where and How You Operate PowerShell

DropBooksDropBooks

Chapter 15

PowerShell Ninjas: Running Jobs
Remotely or in the Background

In This Chapter
▶ Multitasking with background jobs

▶ Managing background jobs

▶ Administering commands remotely

Most of what I’ve done (and continue to do on a daily basis) is geared

to system automation. Whether you’re managing tens of thousands of

computers or managing a few of servers, one thing remains the same:

To be efficient, you need to be able to manage all those systems easily from

a central management point. Sure, you have plenty of ways to manage sys-

tems remotely, such as by using Windows Management Instrumentation

(WMI), but sometimes even that method has drawbacks, such as reduced

performance.

Now you can use Windows PowerShell 2 to run Cmdlets remotely. Another

new feature you can take advantage of in Windows PowerShell 2 is the ability

to run background jobs, which means that you can run Cmdlets and other

things in the background while you do something else.

In this chapter, you explore one of the most compelling reasons for using

Windows PowerShell 2, which is to run commands in the background as well

as running commands on remote computers that are also running Windows

PowerShell 2. This gives you the ability to run more things in parallel and

take full advantage of all the PowerShell commands on remote computers

just as if you were physically there.

DropBooksDropBooks

210 Part IV: Controlling Where and How You Operate PowerShell

Using Background Jobs
If you open Windows Task Manager, you’ll see a bunch of running processes,

most of which are processes that you don’t use interactively and are running

in the background (ideally, doing something useful). The traditional Windows

command shell lets you run one command at a time unless, of course, the com-

mands are piped together. Still, you’re limited to running one series of com-

mands at a time. One way around this limitation is to start a new command shell

that in turn runs other commands. Although this method works, you really have

little control after you get the process started. It’s not easy to find out the status

of the process after it gets going — which may be important if you need to make

sure that the process has finished before moving on to something else.

You must be an administrator on the computer to take advantage of back-

ground jobs.

Enabling WinRM
You have to enable Windows Remote Shell (WinRM) before you can use any

of the background job Cmdlets. As the name implies, WinRM is designed to

allow commands to be run remotely on other computers as long as they have

WinRM installed — even if you just want to create background jobs on the

same computer where you’re running the script because it uses the same

WinRM features to create and run the jobs. Here’s the easiest way to set up

WinRM:

 1. Install WinRM 2, if it isn’t already installed.

 Currently available at https://connect.microsoft.com/WSMAN/
Downloads.

 2. At a command or PowerShell prompt, run winrm quickconfig.

 3. When prompted, press Y to make the configuration changes

automatically.

 When the configuration changes are made, the WinRM service starts.

Starting a new job
You create background jobs by using the Start-Job Cmdlet. Minimally, the

only thing you need to do is give Start-Job the command you want it to

run. This command can be as simple as getting a directory listing of every-

thing at the root of the C: drive, like this:

Start-Job -scriptblock {“Get-ChildItem C:\”}

DropBooksDropBooks

211 Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background

This code automatically starts the command sequence you specify in the

background, and you immediately return to the Windows PowerShell prompt.

You may notice, however, that in and of itself, running this command doesn’t

seem to do anything other than return some information about the job:

Id Name State HasMoreData Location Command
--------- ---- ----- ----------- -------- -------
1 Job1 Running True localhost Get-

ChildItem C:\

You can see what each of the job properties is for in Table 15-1.

Table 15-1 Job Object Properties
Property Description

ID Displays a unique number assigned to the job while it’s
running.

Name Shows the name you give the job, using the -name
switch; otherwise, it’ll contain a generic name such as
Job1.

State Shows the current state of the job.

HasMoreData Lets you know whether you can retrieve more data
from this job. (I talk about retrieving jobs in the next
section.)

Location Indicates where this job is running. If you’re creating a
job to run on the machine you’re working on, this prop-
erty will be localhost; otherwise, it’ll be the name
of the computer on which the job is running.

Command Specifies the command that this job is running.

Start-Job returns a reference to the job so you can use this reference to

access it later. You can save this reference in a variable, if you want, to make

referring to that particular job easy, as in this example:

$myjob = Start-Job -scriptblock {“Get-ChildItem C:\”}

Getting results
If jobs that you create run in the background, how do you get the data

returned by them? Here’s probably one of the coolest features of Windows

PowerShell background jobs: As the jobs run, any data they return is stored

for you until you’re ready for it. To retrieve the data from a job, you use the

Receive-Job Cmdlet. Because it’s possible to have many jobs running at

DropBooksDropBooks

212 Part IV: Controlling Where and How You Operate PowerShell

the same time, you need to give PowerShell the job object from which you

want it to retrieve the data. If you save the return value of Start-Job in a

variable, you can use that variable to feed into Receive-Job because it acts

as a reference to that job object, as in this example:

Receive-Job -job $myjob

Many times, you submit a job and don’t keep track of the job object directly;

instead, you store it in a variable. Don’t worry — you can still get the data

from the job as long as you have some other information that uniquely identi-

fies the job you’re interested in. One method is to run Get-Job to get a list

of all the jobs on the system and then use the ID to let Receive-Job know

which job you want to get data from. This example is how you get the result

from the job with the ID value of 3:

Receive-Job -ID 3

You use Get-Job to see a list of all the jobs on the system.

If you look closely at the output of Get-Job, you’ll notice a column called

HasMoreData. This value stays true for as long as you can retrieve data

from that particular job. When you run Receive-Job, it sets this property

to false if the job is already complete and no more data is left to retrieve. If

the job takes a long time to run (maybe you’re doing a directory listing, using

Get-ChildItem for your entire C: drive and all its subdirectories), and you

run Receive-Job before the job finishes, the code returns the data it has

for now, but HasMoreData continues to be true. If you run Receive-Job

again, it gives you the rest of the data that’s available until no more data is

left to return.

The default behavior of Receive-Job seems reasonable. After all, after you

get the data from the job, you probably don’t care about the data anymore.

Suppose, though, that the job is running Get-ChildItem against your

entire C: drive and that the job takes 15 minutes to complete. At around the

8-minute mark, you want to use Receive-Job to take a peek at its progress,

but you don’t want to process the results just yet. The problem is that if you

run Receive-Job before the job ends, you have to retrieve all the currently

available data, which is subsequently cleared from the job. This means that

if you run Receive-Job after it finally completes, you’re getting only part of

the results — the part that you didn’t read the first time. To get around this

limitation, run Receive-Job with the -keep parameter like so:

Receive-Job -ID 5 -keep

 Running Receive-Job with the -keep parameter allows you to get all the

currently available data from the job but doesn’t clear the data. Subsequent

calls to Receive-Job for the same job return all the data, not just the ones

you haven’t already read.

DropBooksDropBooks

213 Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background

Waiting for a job
Background jobs are extremely useful because they allow you to run things in

parallel by executing commands in the background, freeing your console for

other things. If you write a script that takes advantage of background jobs,

you’ll undoubtedly find a scenario in which one of these jobs must complete

before you can move on. With these jobs running in the background indepen-

dently, what can you do? The easiest method is to wait for the job to finish

before proceeding by using the Wait-Job Cmdlet like this:

$myjob = Start-Job -scriptblock {“Get-Service”}
#Do a bunch of stuff here...then...
Write-Host “Waiting for job to finish...”
Wait-Job $myjob
Write-Host “Finally done...”
Receive-Job $myjob

Granted, this example is a bit contrived, because Get-Service returns

fairly quickly and I could’ve just waited for it to finish, but you can see how it

works. You start a job that may take some time, and go off and do a few other

things. Then, when you need the data, you can use Wait-Job to make sure

that the job has completed before moving on.

Any kind of waiting process is basically a blocking process; the code is

blocked from continuing until it reaches whatever condition you set for the

waiting. The problem with this method is that the code could wait forever if

something’s wrong with the background job, causing it to hang. You can get

around this problem by imposing a timeout on Wait-Job. A timeout is an

ultimatum that says, “If you don’t get done within this given time, I’m leav-

ing without you.” Here’s how you can wait for a task for 60 seconds before

moving on:

Wait-Job $myjob -timeout 60

 The -timeout parameter is useful for averting an infinite wait condition.

You have to be aware, however, that when the timeout has been reached, the

code will just continue to the next statement without displaying any error

messages. Whenever you use the -timeout parameter, you want to follow

up with a check to see whether the job actually completed, as this code

snippet does:

Wait-Job $myjob -timeout 60
if ($myjob.JobStateInfo.State -ne “Completed”) {
 Write-Host “Job timed out!”
} else {
 $data = Receive-Job $myjob
}

DropBooksDropBooks

214 Part IV: Controlling Where and How You Operate PowerShell

Terminating a job
When a job completes, running Get-Job lists that job with a state of

Completed and the HasMoreData property set to true. Interestingly

enough, when you run Receive-Job on a completed job and retrieve all the

available data, the job is still listed when you run Get-Job. The purpose of

this list is to let you see what jobs have run on the computer. The obvious

problem, of course, is that after you’ve created more than a few jobs, the list

can get out of hand.

The solution is to delete the job when you’re done using it. Most likely, you’ll

delete it after Receive-Job runs because the job won’t have any more

data to provide anyway. To accomplish this task, you use the Remove-Job

Cmdlet. You identify the job you want to remove by providing a reference to

that job object or by specifying some unique identifier, such as its session ID,

as in this example:

Remove-Job $myjob
Remove-Job -ID 3

Bringing a job to a grinding halt
If you can start jobs, logically, you have to have a way to stop jobs. One of

the most common occasions for stopping jobs is when you start a job that

takes a very long time to finish and then decide that you don’t want to run

it anymore. Stopping a job is as easy as running the Stop-Job Cmdlet and

giving it a reference to the job that you want to stop or the session ID (don’t

you just love how predictable Windows PowerShell is?), as in this example:

Stop-Job $myjob
Stop-Job -ID 3

Another reason for stopping a job is to respond to a timed-out Wait-Job

command. Suppose that you’re running a job that you expect to complete

in less than a minute, but just to give it enough breathing room, you set its

timeout to 3 minutes. If the job still times out after 3 minutes, it’s safe to

assume that something went wrong. You can go on doing something else and

leave the job as it is so you can see what happened, but if you don’t really

care whether the process occasionally times out, deleting it is the way to go.

Here’s how you do it:

Wait-Job $myjob -timeout 180
if ($myjob.JobStateInfo.State -ne “Completed”) {
 #something went wrong, stop this job.
 Stop-Job $myjob
}

DropBooksDropBooks

215 Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background

 Combining Wait-Job with Stop-Job is one way to make sure that a job isn’t

allowed to run more than a given amount of time. If you start a job that copies

data from one computer to another, for example, and you want to make sure

that it either finishes within the next two hours or stops immediately, first you

create the job; then you immediately run Wait-Job and have it wait with a

timeout of two hours. If the job isn’t done within two hours, the timeout will

cause PowerShell to go to the next statement in the script, which can be

Stop-Job to stop the job from running immediately.

Running Commands Remotely
One of the things I love most about working in a networked environment is

that there’s very little you can’t do right from your fingertips. You can access

files, muck around with the registry, and do all kinds of fun stuff without leav-

ing the comfort of your chair. With the power of Windows PowerShell at the

ready, you can take advantage of the same powerful commands but run it

against different computers.

Many of the built-in Cmdlets support a -computername parameter, which

you can use to give the name of the remote computer on which you want to

run the command. Most commands let you access common services such as

querying WMI and getting process and service information. The great part

is that for these commands, you don’t even need Windows PowerShell to be

installed on the remote host to get the data you’re requesting. PowerShell

simply relies on well-known Application Programming Interfaces (APIs) that

are built into Windows.

Using Windows PowerShell everywhere
As great as all that is, sometimes (or, depending on what kind of work you

do, all the time), you want to interact with a remote host by using Windows

PowerShell Cmdlets as well as other Windows PowerShell features (such as

variables), just as you do your own computer. You want to be able to enter

command scripts or run Windows PowerShell scripts just as though you were

physically on that computer.

You could cheat by using a remote-control program like Remote Desktop,

connecting to the computer remotely, opening Windows PowerShell, and

doing what you need to do. That method might work fine for connecting to

a server, because Windows gives you your own environment to play in. If

you try to use this method to manage workstations, however, your users will

have to wait until you’re done because you’re taking over their desktops.

This method may work well when you’re troubleshooting something, but if

you just want to make some changes or get some information remotely with-

out interrupting users, remote control just isn’t going to cut it.

DropBooksDropBooks

216 Part IV: Controlling Where and How You Operate PowerShell

What you really need is a remote shell — something that you can connect to

from within Windows PowerShell and use to enter commands just as though

that command shell were running on the remote host. This feature was lack-

ing in Windows PowerShell 1 but is an integral part of Windows PowerShell 2.

Getting what you need for
remote commands
Built-in Cmdlets like Get-Service just use the Windows API to retrieve data

from remote hosts but for you to run commands remotely both the computer

you are on and the computer you want to run commands on must have three

essential components:

 ✓ Microsoft .NET Framework 2.0

 ✓ Windows PowerShell 2

 ✓ WinRM 2.0 service

You need to have Windows PowerShell installed on both computers to get

remote commands to work.

 WinRM is a Simple Object Access Protocol (SOAP)–based implementation

of the WS-Management Protocol, which is an open specification designed

to allow hardware and software from different vendors to interact. In the

Windows operating systems, WinRM is implemented as a layer on top of

WMI — another feature that allows cross-vendor interoperability.

Speaking PowerShell with
a different computer
You can launch an interactive Windows PowerShell session that connects

you with a remote computer and run commands on that computer just as

though you were physically there by using the Enter-PSSession Cmdlet.

You connect to the computer by giving Enter-PSSession the name of the

computer to connect to, like this:

Enter-PSSession computer1

 Windows Vista and Windows Server 2008 both require you to run the

Windows PowerShell window as an administrator before running this com-

mand. Otherwise, the command will fail, even if you’re logged in with adminis-

trative credentials.

DropBooksDropBooks

217 Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background

Running a remote PowerShell session assumes, of course, that the remote

computer (computer1) meets the requirements for running remote com-

mands. You don’t need to explicitly provide the credentials for logging into

the remote computer because by default, PowerShell will automatically try

to connect with the credentials you used to log in, so as long as you run

this command with credentials that include administrative privileges on the

remote computer, you’ll be authenticated and logged in automatically.

By default, if you don’t specify an authentication method or credential,

PowerShell will try to use your Kerberos ticket to connect to the remote host.

If you want to connect by using alternative credentials, Enter-PSSessions

has a -Credential parameter in which you can provide the username you

want to use to log in, as in this example:

Enter-PSSession computer1 -Credential mydomain\admin

No parameter for providing the password exists; instead, you must key in the

password when prompted.

If you connect successfully, the only difference you’ll see at the Windows

PowerShell prompt is that the usual PS <current_path> prompt is pre-

fixed by the remote computer name in square brackets, like this:

[computer1]: PS C:\Windows\System32>

This prompt makes it very easy to see computer you’re connected to and

also serves as a reminder than any command you give at the Windows

PowerShell prompt will be executed on the remote computer, not on

your own.

When you’re done doing whatever you need to do, you can get out of that

computer and back to your own by issuing the Exit-PSSession Cmdlet (no

parameter required).

Invoking commands remotely
Many times, you just want a quick session and don’t need to open a whole

interactive remote session with a computer; you want to issue your com-

mand and get out. Sure, you can accomplish this task by using Enter-
PSSessions and Exit-PSSession, but those Cmdlets add two steps to the

process. The quickest and most direct way to run a remote command is to

use the Invoke-Command Cmdlet.

DropBooksDropBooks

218 Part IV: Controlling Where and How You Operate PowerShell

Just like Enter-PSSession, Invoke-Command takes the name of the com-

puter you want to connect to. but it also has a bunch of other options. The

most important of these options is the -ScriptBlock parameter, which you

use to tell Invoke-Command which command or set of commands you want

to run on the remote host. Here’s how you would run Get-Date remotely on

the computer called CORPDC1:

Invoke-Command -computername CORPDC1 -ScriptBlock {Get-Date}

Although I use a simple Cmdlet in the example, the script block can effec-

tively contain any code that can be encapsulated within the curly braces — a

whole sequence of commands or even the code for a small script.

 You can run the same script block on more than one computer by giving

Invoke-Command all the computer names at the same time. You do this by

specifying the computers after the -computername parameter as a comma-

separated list or as a collection of names. One way to get a collection of names

is by running the Get-Content Cmdlet on a text file containing a list of com-

puter names. Here’s an example of both methods.

Invoke-Command -computername CORPDC1,CORPDC2 -scriptblock {Get-Date}
Invoke-Command -computername (Get-Content computers.txt) -scriptblock {Get-Date}

Creating a persistent connection
The method in the preceding section for using Invoke-Command is perfect

for simple commands or command sequences in which you don’t need to

worry about maintaining state. If you just want to run Get-Date to get the

current date and time on a remote computer, for example, using Get-Date

in the script block is all you need to do. After the data is returned and dis-

played, you don’t care about it anymore.

What happens, however, if you want to save the information retrieved in the

script block for later use on the remote host? With the method I’ve shown

you so far, this task isn’t possible, because the next call to Invoke-Command

has no information about the script block that you issued before. The solu-

tion is to have something that you can use to keep track of various connec-

tions and variables you define. This something is called a session.

 A session is an object used to maintain a persistent connection between the

local computer and one or more remote hosts. It allows state information such

as variables and functions to be shared between the computers.

DropBooksDropBooks

219 Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background

You create a session by using the New-PSSession Cmdlet and giving it the

name of the computer with which you want to associate the session. New-
PSSession returns an object that represents this session, so it makes sense

to store this object in a variable ($s) so that you can use it for subsequent

calls for Invoke-Command, like this:

$s = New-PSSession -computername CORPDC1

Normally, Invoke-Command sets up a temporary session, runs the script

block, and then tears down the session so that all the variables and other

pieces of information are removed from memory. New-PSSession estab-

lishes that connection, but rather than tearing it down, the Cmdlet keeps it

going. Because you have an established connection with the remote host,

you can maintain information between multiple calls to Invoke-Command as

in this contrived example:

Invoke-Command -session $s -scriptblock {$start = Get-Date}
Invoke-Command -session $s -scriptblock {(Get-Date) - $start}

You may notice a couple of things in this example, starting with the use of the

-session parameter. You provide Invoke-Command the session object that

you created by using the New-PSSession Cmdlet. Because the session is an

object that represents the connection between the local computer and other

computers, you no longer have to give Invoke-Command the name of the

computer you want it to connect to; that name is defined implicitly based on

the computers participating in the session. The other noteworthy thing you

may notice is that variables you use within the script block maintain their

value even after Invoke-Command is done.

Because the session stays connected in the background, you want to make

sure that you close the connection when you’re done with the session. You

can close it easily by using the Remove-PSSession Cmdlet like this:

Remove-PSSession $s

Run Remove-PSSession on any session you create when you’re done using

it to close the connection with the other computers and to free the memory

consumed by maintaining the session’s state.

Running remote background jobs
You can run a background job remotely by connecting to the computer with

Enter-PSSession and then running the background job as you normally

would with Start-Job. Because you’re in a remote session, the background

job will run on the remote computer you’re connected to. This method gener-

ally is useful if you want to run background jobs on the remote computer on

an ad-hoc basis.

DropBooksDropBooks

220 Part IV: Controlling Where and How You Operate PowerShell

Another way is to use the Invoke-Command Cmdlet to run Start-Job

remotely. Invoke-Command establishes the connection with the remote

host. Thereafter, anything that you tell the Cmdlet to run in the script block

(such as Start-Job) runs on the remote machine. In practice, the code

looks like this:

$mysession = New-PSSession –computername Computer1
Invoke-Command –session $mysession –scriptblock {$myjob = Start-Job –scriptblock

{Get-Service}}
Invoke-Command –session $mysession –scriptblock {Receive-Job $myjob}
Invoke-Command –session $mysession –scriptblock {Remove-Job $myjob}
Remove-PSSession -$mysession

In both scenarios I describe above in the Invoking Command Remotely

and the Running remote background jobs sections, the jobs are executed

remotely, and so are the results. In some cases, you want to run back-

ground jobs remotely on a few computers but collect all those results on the

machine you’re running the command from, thereby centralizing the data.

Windows PowerShell 2 solves this problem by adding the -asjob switch to

Cmdlets that support this feature. The -asjob switch runs that command

on the specified computer, but the job object itself is stored on the local

computer. This arrangement means that although the job itself runs on the

remote computer, you can check the status of the job as well as run any of

the *-Job Cmdlets on this job object on the local computer as you would

any background job you create.

Here’s how you can run Get-ChildItem C:\ on two computers as separate

background jobs and manage these jobs locally:

Invoke-Command –ComputerName Computer1, Computer2 –scriptblock {Get-ChildItem
C:\} –asjob

Now if you run Get-Job on your computer, you see two jobs running, just as

would if you started two jobs locally by using the Start-Job Cmdlet. The

difference is that the Location field displays the names of the computers on

which these jobs are actually running, rather than just localhost. Then you

can use the job ID or name to wait for the job, receive the data from the job,

or even remove the job, just as you would with any background job.

 Another really useful Cmdlet that supports the -asjob switch is Get-
WMIObject. You can run Get-WMIObject on a bunch of computers by

using the -ComputerName switch and then add the -asjob switch to create

job objects automatically for each of these background jobs, which you can

manage by using *-Job Cmdlets.

DropBooksDropBooks

221 Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background

Understanding policies, profiles,
and precedence
Now that you have a method for using Windows PowerShell locally on your

computer as well as remotely, you have to worry about the issue of policies

and profiles. The remote execution policy on your computer may be com-

pletely different from that of the other computer, for example. Also, because

Windows PowerShell profiles are defined and loaded on a per-machine basis,

how does Windows PowerShell behave when you’re connecting to other

computers remotely? Will the remote computer be able to run the aliases and

other functions defined in your profile on the local computer?

 The rule is actually very simple: When you’re running commands locally, all

local policies and profiles are in effect, but when you run commands remotely

(whether you use Invoke-Command or Enter-PSSession), the remote com-

puter’s policies and profiles take precedence.

This rule may sound trivial, but if you have a complex set of aliases and other

useful functions defined in your profile, none of these features will be avail-

able to you when you run Windows PowerShell commands remotely unless

you copy your profile to the remote computer ahead of time.

Similarly, pay attention to remote execution policies. Commands that run

perfectly fine on your computer may not run correctly on the remote host if

it has stricter execution policies than your own computer does.

 Although you have the convenience of running commands remotely in addi-

tion to taking advantage of sessions to keep information persistent, you

mustn’t forget that you’re running these commands as though you’re on that

remote host. If you’re referencing files or third-party Cmdlets, they must exist

on the remote host for the command to work. This rule is easy to forget when

you’re trying to debug a remote command that isn’t working the way it should.

DropBooksDropBooks

222 Part IV: Controlling Where and How You Operate PowerShell

DropBooksDropBooks

Chapter 16

Making Your Script Speak
Different Languages

In This Chapter
▶ Understanding the purpose of internationalizing scripts

▶ Incorporating translated text into your scripts

▶ Sharing your scripts all over the world

If anything is undeniable, it’s the fact that globalization is here to stay.

Companies are becoming more global, and with the Internet being so prev-

alent in almost every part of the world, there’s not a single place that you or

your technology can’t touch. This isn’t some kind of political statement or

shocking revelation: The truth is that if you work for any large organization,

you’re bound to be global now or are in the process of becoming globally

present. Even if you don’t work for a multinational company, you may have a

great idea for a really useful Windows PowerShell script but need to collabo-

rate with other script writers in other countries to make your script work in

different languages. Internationalizing your scripts is the process of making

them accessible to users who speak different languages.

In this chapter, you utilize techniques for making your scripts more acces-

sible to users who communicate in a different language. While being able to

internationalize your scripts is important if you work in a global company

that speaks many languages, it’s also very useful when you want to share

your scripts with other Windows PowerShell users that use a language other

than your own to communicate.

 When I talk about languages in this chapter, I’m not talking about program-

ming or scripting languages but rather languages as it refers to speech and

dialects.

DropBooksDropBooks

224 Part IV: Controlling Where and How You Operate PowerShell

Seeing the Importance of
Internationalizing Scripts

If you write a really useful script or advanced function in Windows

PowerShell, you may want to share your brilliance with the rest of the world.

Sometimes, however, your code isn’t friendly for users in other parts of the

globe; your code may create a lot of output in English, which may not be

understood by people who don’t use English as their primary language.

Or maybe it’s the other way around. A Windows PowerShell programmer in

Spain has written some code that’s very useful, but the user prompts and

help text are all written in Spanish. Unfortunately, you can’t speak Spanish;

therefore, you can’t make use of this code.

When I talk about internationalizing a script, I’m referring to the process of

making user-facing parts of the script (such as help text and output) available

in different languages. It’s impossible to make a script work for every lan-

guage and dialect in the world, but internationalization allows you to incorpo-

rate different versions of your output text in different languages.

Giving Your Scripts Different Tongues
The easiest way to make your script display output in different languages is

to have all these variations of output text in your code and to use some kind

of if-then clause to control which language gets displayed. Here’s some

code that implements internationalization this way:

$lang = (Get-UICulture).Name
if ($lang -eq “en-US”) {
 Write-Host “Hello!”
} elseif ($lang -eq “es-ES”) {
 Write-Host “Hola!”
} elseif ($lang -eq “fr-FR”) {
 Write-Host “Bonjour!”
}

Although this code works for a simple case, imagine a script that outputs

dozens of kinds of text. That script would have to be riddled with messy code

to handle each language you want to support. Even worse, if you decide to

support yet another language later, you have to go back to your code (which

is probably hundreds of lines long now, if not thousands of lines long) to add

that language.

DropBooksDropBooks

225 Chapter 16: Making Your Script Speak Different Languages

A more elegant solution — one that’s used by most programs today — separates

the text that gets displayed to users from the actual code. The different versions

of the same text in different languages are stored separately; the code just out-

puts some text that’s automatically substituted for the correct version based

on the user’s language. To do this in Windows PowerShell 2, query the user inter-

face (UI) culture of the Windows PowerShell environment and then import the

appropriately translated text and display it to the user. This feature is new

in Windows PowerShell 2 and isn’t backward-compatible with Windows

PowerShell 1.0.

Using new internationalization features
Windows PowerShell 2 includes several new features that make internation-

alization possible. Table 16-1 highlights the different features that enable the

detection of the computer’s currently configured language (culture) as well

as additional capabilities for introducing alternate text to support different

languages.

Table 16-1 New Windows PowerShell Features That
 Support Internationalization
Feature Description

$Culture This new automatic variable stores the lan-
guage used by the system (for date and time,
for example).

$UICulture This new automatic variable stores the lan-
guage used by the user interface (for menu
items, for example).

DATA section Scripts can contain a DATA section that
defines the default text to be used by the
script.

ConvertFrom-StringData This new Cmdlet converts a strong con-
taining name=value pairs to a hash table.

Import-LocalizedData This new Cmdlet imports the correct text
for the specified language into a script at
runtime.

.psd1 files These files contain translated text strings.
You can think of them as being resource
files that contain the appropriate translated
text for a particular language. The files
are used in conjunction with Import-
LocalizedData.

DropBooksDropBooks

226 Part IV: Controlling Where and How You Operate PowerShell

Understanding cultures
Internationalization is synonymous with culture. The culture of the system

defines the language that is used to represent system information, and a

separate culture defines what is used in the UI. This difference is important

because the system’s culture doesn’t necessarily have to match the UI’s cul-

ture. This is usually found in shared computers used by more than one user

that prefer different UI languages.

The culture is represented as one of three property values. The first prop-

erty, LCID, is a numeric value representing that culture. The second prop-

erty, Name, is a five-character code representing the culture. Finally, the last

property, DisplayName, is just a more descriptive name for the culture. For

the U.S. English culture, the property values are

 ✓ LCID: 1033

 ✓ Name: en-US

 ✓ DisplayName: English (United States)

 To find the current culture or UI culture, you can run the Get-Culture and

Get-UICulture Cmdlets, respectively.

Putting it all together
All these extra features are nice, but it’s hard to see how everything fits

together until you see what parts these features play. I’m going to start you

off with a simple example. Suppose that you speak only one language —

English — and you’re writing a script that you know you’ll eventually want

to internationalize. Your first step is defining the different kinds of text that

you want to display, and you define them in the form of a DATA section within

your script. Then, when you want to output something in your code, rather

than writing out the text as you normally would, you simply refer to the text

that you defined in your DATA section. Here’s a simple script that performs

just that function:

DATA MyStrings {
ConvertFrom-StringData @’
Greeting = Hello!
str1 = I speak
str2 = English
str3 = The date and time is
Leaving = Good Bye!
‘@
}

DropBooksDropBooks

227 Chapter 16: Making Your Script Speak Different Languages

Write-Host $MyStrings.Greeting
Write-Host ($MyStrings.str1 + “ “ + $MyStrings.str2)
Write-Host ($MyStrings.str3 + “ “ + (Get-Date))
Write-Host $MyStrings.Leaving

All this script does is greet the user, say what language it speaks, give the

date and time, and then say goodbye. In a real-world script that actually

does something useful, any number of other Windows PowerShell commands

would be sprinkled throughout, but the bottom line is that whenever you’re

ready to display the data, all the text you display should be pulled from your

DATA section.

Okay, now you understand how to generalize the strings so that you can

refer to them later in your code by using the DATA section. If I stopped here,

you might conclude that to internationalize this script, all you need to do is

make a copy of this script and replace the text defined in the DATA section.

Sure, that method works. The problem is that rather than having one script

that does everything, you have multiple copies of the same script in multiple

places for different languages. This situation is a problem for a few reasons:

 ✓ You have to remember which script to run depending on the user’s

language.

 ✓ If you support ten languages, you need to have ten copies of the script.

 ✓ If you have to make changes in the script, you have to update the copy

for each language that you support.

I’m sure that it didn’t take you long to realize that this idea is a very bad

one. It certainly doesn’t make it easy to support as you add more languages

or create more scripts. What you really want is to have a single script with

different translations defined and have it choose the correct language

automatically based on the current culture. This task is the job of Import-
LocalizedData.

Import-LocalizedData looks at the UICulture that is in use when the

script is executed (en-US, for example) and then looks for a subdirectory

where the script is located that has the same name as that of the Culture.

Next, it looks for a .psd1 file with the same name as the script and loads it,

dynamically replacing the values of the predefined DATA section with the

values from that file. If the Cmdlet can’t locate the .psd1 file, the script con-

tinues to use the values from the DATA section you defined within the script.

 The culture name consists of two elements separated by a hyphen. The first

part is the general language abbreviation, and the second part indicates a

specific variation of that language. If Import-LocalizedData can’t find a

folder matching the specific culture, such as en-US, it looks for a folder that

matches just the first part, such as en. This default behavior allows you to

create .psd1 files that apply to all specific forms of that language.

DropBooksDropBooks

228 Part IV: Controlling Where and How You Operate PowerShell

Here’s what a .psd1 file might look like for a Spanish (Spain) translation of

the DATA section:

ConvertFrom-StringData @’
Greeting = Hola!
str1 = Yo hablo
str2 = Español
str3 = La fecha y hora es
Leaving = Adiós!
‘@

If the script is called CurrentTime.ps1, you just create a subfolder contain-

ing CurrentTime.ps1 and call it es-ES; then save this .psd1 file in the

es-ES subfolder as CurrentTime.psd1. The final step is adding the call to

Import-LocalizedData to the CurrentTime.ps1 script, like this:

DATA MyStrings {
ConvertFrom-StringData @’
Greeting = Hello!
str1 = I speak
str2 = English
str3 = The date and time is
Leaving = Good Bye!
‘@
}

Import-LocalizedData MyStrings

Write-Host $MyStrings.Greeting
Write-Host ($MyStrings.str1 + “ “ + $MyStrings.str2)
Write-Host ($MyStrings.str3 + “ “ + (Get-Date))
Write-Host $MyStrings.Leaving

The only thing I added in the example is the call to Import-LocalizedData

after the DATA section. You only have to give Import-LocalizedData the

name of the DATA section that it’s going to replace (if it finds that section, of

course), and the Cmdlet automatically goes off and does its thing. Unless you

happen to be using es-ES as your current UI culture, you’re going to get a

complaint that the Cmdlet can’t find the .psd1 file in the en-US folder, and

the script will continue as normal.

You can test this script in two ways:

 ✓ Change your UI in whatever version of Windows you’re running to

es-ES, and run the script.

 ✓ Use the -culture parameter of Import-LocalizedData and specify es-
ES as the culture. The Cmdlet finds and loads the .psd1 file you created.

DropBooksDropBooks

229 Chapter 16: Making Your Script Speak Different Languages

For testing, the latter method is a good way to see whether everything works

as it should. Simply replace the existing Import-LocalizedData line with

Import-LocalizedData MyStrings -culture “es-ES”

Now when you run the script, it executes happily, this time in Spanish. The

best part is that if you want to support another language, all you need to do

is follow these steps:

 1. Find someone who can translate your text into that language (or, if

you’re cheap, you can use many of the free online translators).

 Be forewarned: The translation provided by free online translators isn’t

always right, and you might end up insulting someone if you don’t do

it right.

 2. Create a new .psd1 file with the translated text, and create a folder

that matches the culture name for that language.

 Save the new .psd1 file with the same name as the script, except with a

.psd1 extension.

That’s it! Now your script supports this new language, so if you run it from

a computer that uses that UICulture, it’ll pick up the new language

automatically.

 To find the culture names and identifiers for other languages, look up the

CultureInfo class on MSDN (http://msdn.microsoft.com/en-us/
library/system.globalization.cultureinfo.aspx).

Sharing Scripts with Others
One of the best aspects of scripting is that because all the code is wide open,

it’s open source by definition. Different companies have different policies

about code sharing outside the organization, and of course, if you’ve written

proprietary code that is critical to your business, you probably don’t want to

share it with the general public. If you think that you’ve developed a Windows

PowerShell script that has universal appeal, however, it’s probably good to

share it with the rest of the Windows PowerShell community. In fact, the con-

tinued growth and acceptance of Windows PowerShell depend heavily on the

contributions made to the community by people such as you.

DropBooksDropBooks

230 Part IV: Controlling Where and How You Operate PowerShell

Why am I mentioning all this? If you want to share your code with other

people, you really should be cognizant of that fact that users in all parts of

the world may want to use it and that their primary language may not be

English. If you use DATA sections in your scripts for all your data output,

other users can add more value to the scripts by contributing .psd1 files for

their own cultures, thereby giving your scripts much better global appeal.

DropBooksDropBooks

Chapter 17

Smashing Those Bugs
In This Chapter
▶ Keeping bugs in check

▶ Examining bugs under a microscope

▶ Using the debugger for effective eradication

One of the most frustrating things about writing any kind of code, such

as a Windows PowerShell script, is that inevitably you’ll run into a bug.

A bug occurs when a piece of code does something that it’s not supposed

to do or acts a way that it wasn’t designed to act. I’m not talking about bugs

in Windows PowerShell itself, but bugs in Windows PowerShell scripts that

you or someone else wrote. The nastiest kind of bug is one that’s hard to

reproduce. I like to call this type the sneaky bug (though you might refer to it

as your in-laws). Whatever it is, when you do find a bug, you need to extermi-

nate it quickly; otherwise, that bug will be staring right into your face some-

day at the most inopportune moment.

In this chapter, you make use of the new debugging features in Windows

PowerShell 2 that’ll make it much easier to track down errors in your code so

you won’t have to keep hitting your head on the wall in frustration the next

time your script doesn’t work as you expect.

Finding Out Where the Bugs Come From
Software bugs are never intentional. Instead, they usually occur when the

script or program enters a state that it wasn’t designed for. When you find a

bug in a script, you’ll usually find that it’s caused by one of these situations:

 ✓ Unexpected input

 ✓ Incorrect logic

 ✓ System error

DropBooksDropBooks

232 Part IV: Controlling Where and How You Operate PowerShell

Guarding against unexpected input
Unexpected input occurs when some part of your code expects the data to

be a certain type or format but instead gets something that it doesn’t know

how to deal with (or deals with incorrectly). A good example is when you’re

expecting a value that’s supposed to represent a valid date but instead get

some random text. Or, if you expect the data to be in MM/DD/YYYY format,

you get YYYY-MM-DD instead. Bugs that come from unexpected input exist

because the author of the script made assumptions that may not hold true.

 The best way to protect yourself against unexpected errors is to be paranoid

about any input that goes into your script that you don’t have control of.

Rather than assume that the input is in the correct format or data type,

assume that it isn’t going to be valid, and write code to handle each case

where the input might be incorrect.

Watching out for incorrect logic
Incorrect logic can be caused by many things, but I’ve found that it’s caused

by predominantly incorrect assumptions, typos, or the programmer’s simple

failure to think through all the possible ways in which the script might run.

Here’s an example of incorrect logic in which I’m trying to find out whether

$arr contains three or more items:

$arr = (1,2,3,4,5)
if ($arr.length -gt 3) {
 Write-Host “Array has 3 or more items!”
}

When I run this code, it displays “Array has 3 or more items!”, as

expected, because the array has five elements. But what if the code ended up

looking like this instead?

$arr = (1,2,3)
if ($arr.length -gt 3) {
 Write-Host “Array has 3 or more items!”
}

Now the array has three elements, so you’d expect it to display the corre-

sponding string . . . but it doesn’t. The problem is that the logic is wrong. I’m

supposed to use -ge (greater than or equal to), not -gt (just greater than).

The correct code is

$arr = (1,2,3)
if ($arr.length -ge 3) {
 Write-Host “Array has 3 or more items!”
}

DropBooksDropBooks

233 Chapter 17: Smashing Those Bugs

This example may seem to be very trivial and obvious, but that’s easy to say

when you have only four lines of code to look at. If this example were part of

a script hundreds of lines long, tracking this problem would be hard, because

it might never manifest itself except on those occasions when the array was

exactly three elements long.

Expecting the unexpected: System errors
System errors are by far the most unpredictable of all the problems your

script may encounter. System errors can introduce bugs that are nearly

impossible to predict, account for, and (sometimes) troubleshoot. When I

talk about system errors, I’m not referring just to hard drive crashes and the

blue screen of death; I’m also referring to things like network drives not being

available or running out of disk space. When writing your scripts, make sure

that you pay close attention to pieces of your code that have a dependency

and therefore might fail. If your scripts write lots of log files to disk, for exam-

ple, you’ll probably want to check periodically for disk free space to make

sure that you don’t fill the disk.

Understanding the Debugging Process
You have a few ways to debug your scripts. One way is to simply go over

your script again and see whether you can spot the problem. When you get

familiar with common mistakes, this method is usually good enough to catch

bugs resulting from incorrect logic within your scripts. The invalid-input kind

of bug is a bit harder to find, especially if it’s hard to reproduce. Without any

kind of debugging tools at your disposal, you’re pretty much stuck with the

old method of sticking a few Write-Host statements throughout your script

and then watching the script run to see where the problem is coming from.

Have a look at the code snippet in Listing 17-1.

Listing 17-1: A Script with a Bug

$msg = “CODE 404”
if ($msg.substring(0,4) -eq “CODE”) {
 $code = $msg.substring(4,3)
 switch($code)
 {
 200 { $outputMsg = “OK” }
 202 { $outputMsg = “Accepted” }
 401 { $outputMsg = “Unauthorized” }
 403 { $outputMsg = “Forbidden” }
 404 { $outputMsg = “Not Found” }
 500 { $outputMsg = “Internal Server Error” }

(continued)

DropBooksDropBooks

234 Part IV: Controlling Where and How You Operate PowerShell

Listing 17-1 (continued)
 503 { $outputMsg = “Service Unavailable” }

 default { $outputMsg = “Unknown Code” }
 }
 Write-Host $outputMsg
} else {
 Write-Host “No Code Received”
}

The script is fairly straightforward. Some string is stored in the $msg variable.

The script looks at the first four characters and checks to see whether it equals

the string “CODE”. If so, it grabs the three-digit number that represents the

code. Then, using a switch statement to decode what the message means, the

script outputs the decoded message to the screen. So far, so good!

If you run this code, however, even though it’s supposed to output “Not
Found”, it displays “Unknown Code” instead. Something is clearly wrong.

The code listed in $msg clearly says 404, so it should map over to “Not
Found”. If you think about the situation for a second, you realize that

“Unknown Code” would be displayed only if the value of $code didn’t

match any of the values defined in the switch statement.

Now look at how the script derives the value for $code. This value is taken

as a substring of $msg starting with position four and continuing for three

characters. To debug this code, you want to output the value of $code

onscreen so that you know what the switch statement is comparing it with.

You output the value of $code by adding a Write-Host statement immedi-

ately after you get assign its value so that the code looks like this:

$msg = “CODE 404”
if ($msg.substring(0,4) -eq “CODE”) {
 $code = $msg.substring(4,3)

 #Added for debugging purposes
 Write-Host $code

 switch($code)
 {
 200 { $outputMsg = “OK” }
 202 { $outputMsg = “Accepted” }
 401 { $outputMsg = “Unauthorized” }
 403 { $outputMsg = “Forbidden” }
 404 { $outputMsg = “Not Found” }
 500 { $outputMsg = “Internal Server Error” }
 503 { $outputMsg = “Service Unavailable” }
 default { $outputMsg = “Unknown Code” }
 }

DropBooksDropBooks

235 Chapter 17: Smashing Those Bugs

 Write-Host $outputMsg
} else {
 Write-Host “No Code Received”
}

Running the script this time results in this output:

40
Unknown Code

Instead of getting 404, as you want, the value of $code is 40. Looking back

at the substring code, you can easily see why: The starting offset should be

5, not 4. You can fix this problem by replacing that code with this corrected

version:

$code = $msg.substring(5,3)

This time when you run the script, the output is

404
Not Found

You have verified that $code contains the correct substring of $msg and that

the message you want to show is displayed. Now that you’re done debugging,

you can delete the Write-Host $code line or simply comment it out in case

you need to debug this code again in the future.

Working On Your Defense
There’s a common saying that a good offense starts with a good defense. In

any kind of programming, defense is very important. If you look back at the

code in Listing 17-1 (see the preceding section) for manual debugging, you’ll

find many flaws in this script that could lead to bugs in the future. I chose to

write the value of $msg explicitly in the example, but what if $msg contains

some string that’s returned dynamically whenever the script is run, such as

by reading a line in a file?

The first problem is that $msg may not start with the word “CODE”. Okay,

this situation isn’t a problem, because the script checks for it, and when

msg doesn’t start with “CODE”, the script simply displays “No Code
Received”. The second problem is that the script assumes that $msg will

contain at least four characters, because it uses the substring method to grab

the first four characters of the string. What if, for some reason, $msg con-

tains a string that has fewer than four characters? The script would throw an

exception immediately and then quit.

DropBooksDropBooks

236 Part IV: Controlling Where and How You Operate PowerShell

To guard against this problem, you need to perform a sanity check on the

string before trying to take a substring. Rather than taking the substring right

away, you have to check that the length of the string is greater than or equal

to four by using something like this example:

if (($msg.length -ge 4) -and ($msg.substring(0,4) -eq “CODE”)) {
 ... code here..
}

Now if $msg contains fewer than four characters, the first part of the -and

statement evaluates to false, which makes the whole line false, and the

code inside this if statement is skipped.

This solution leaves yet another assumption, however. Immediately after the

script determines that the string does begin with “CODE”, it uses the sub-

string method again to pull out the three characters, starting with offset 5.

This piece of code assumes that if the string starts with “CODE”, it must be at

least eight characters long.

You know what to do. You simply modify that section of code so that it looks

something like this:

if ($msg.length -ge 8) {
 $code = $msg.substring(4,3)
 ...and so on...
} else {
 Write-Host “Sorry, not enough characters!”
}

Now the code is a bit more robust, because it does away with assumptions;

instead, it contains simple yet effective checks to validate the input before

taking actions that could cause the script to quit unexpectedly.

I’m not happy with the code just yet, though. It seems a bit inefficient, don’t

you think? First, the script checks to see whether $msg has at least four char-

acters; then it compares the first four characters with the word “CODE”. If

the result is true, the script immediately does another length check to see

whether $msg is at least eight characters long. In reality, even if the first four

characters match “CODE”, whatever comes after it still depends on $msg to

be at least eight characters long.

To make the code simpler, all you need to do is check that $msg is eight

characters long before checking whether it matches “CODE”. Then you can

get rid of the extra $msg length check within the code block. The final, fixed

script looks like this:

$msg = “CODE 404”
if (($msg.length -ge 8) -and ($msg.substring(0,4) -eq “CODE”)) {
 $code = $msg.substring(5,3)

DropBooksDropBooks

237 Chapter 17: Smashing Those Bugs

 switch($code)
 {
 200 { $outputMsg = “OK” }
 202 { $outputMsg = “Accepted” }
 401 { $outputMsg = “Unauthorized” }
 403 { $outputMsg = “Forbidden” }
 404 { $outputMsg = “Not Found” }
 500 { $outputMsg = “Internal Server Error” }
 503 { $outputMsg = “Service Unavailable” }
 default { $outputMsg = “Unknown Code” }
 }
 Write-Host $outputMsg
} else {
 Write-Host “No Code Received”
}

Unfortunately, error checking is one thing that most people forget to do,

and it’s easy to overlook, especially when you’re so focused on getting the

code to work first. Even I’m guilty of this lapse occasionally. The bottom

line is that if you’re writing a script that you expect to run many more times,

you want to put in as much defensive code as possible to eliminate as many

sources of potential bugs as you can.

Working with Debugging Tools
In “Understanding the Debugging Process,” earlier in this chapter, I use the

method of inserting Write-Host statements within the script. This method

is really a hack, because many scripting languages lack any native debugging

tools that allow you to peek at what they’re doing.

What do debugging tools give you? Debuggers hook into the execution of

your program so that you can see what’s happening on the inside as the pro-

gram is running. They also allow you to set breakpoints, which tell Windows

PowerShell to pause execution when it gets to these points. When the code

reaches a breakpoint, you can check the values of the variables and step

through your code one line at a time to see how it’s running.

The best feature of debuggers is that they don’t require you to make any

changes in your code. You don’t have to worry about going back and remov-

ing a bunch of Write-Host statements that you’ve sprinkled all over the

place just to find the problem.

DropBooksDropBooks

238 Part IV: Controlling Where and How You Operate PowerShell

Working with breakpoints
When you run a script through a debugger, the script runs pretty much the

same way that it did before, except maybe a tad slower because now the

debugger is in there snooping around. That’s not going to help you figure out

what’s wrong, however. The only way to get any value from a debugger is to

set breakpoints. If you don’t know where the problem is, you may want to set

multiple breakpoints until you find the cause of the problem. Listing 17-2 pro-

vides a script that you can use to test some debugging techniques.

Listing 17-2: A Script with a Misspelled Variable

$number1 = 1
$number2 = 2
$sum = $number1 + $numer2
if ($sum -gt 2) {
 Write-Host “Sum is greater than 2!”
} else {
 Write-Host “Sum is less than 2!”
}

When you run the script, the output is “Sum is less than 2!”, which

isn’t what you’d expect, because 1 + 2 = 3, and 3 is certainly greater than 2.

This script is so short that you can easily see what the problem is. I assigned

the value 2 to the variable $number2, but when I used it to calculate the sum,

I misspelled the variable name and instead added $number1 to a new vari-

able called $numer2 that has no value.

To debug something like this code by using a debugger, first you must create

a breakpoint. Because the output of the script depends on the value of $sum,

you need to find out what that value is just before the script gets to the if

statement.

You set breakpoints by using the Set-PSBreakpoint Cmdlet. To set a

breakpoint within a script, you need to give Set-PSBreakpoint the name

of the script and the line at which you want it to pause execution. Assuming

that you saved this script as C:\scripts\debugtest.ps1, you can use

this command sequence:

Set-PSBreakpoint -script c:\scripts\debugtest.ps1 -line 4

 Breakpoints are set and remembered only on a per-session basis. Any break-

points you set during a session disappear when you close the Windows

PowerShell window.

DropBooksDropBooks

239 Chapter 17: Smashing Those Bugs

Now when you run the script, it stops execution just before line 4 of the

script and enters debug mode. Notice that the Windows PowerShell prompt

is now prefixed with [DBG]:, which indicates that you’re in debug mode.

This is what you’ll see on the screen when you hit the breakpoint:

Entering debug mode. Use h or ? for help.

Hit Line breakpoint on ‘C:\scripts\debugtest.ps1:4’

debugtest.ps1:4 if ($sub -gt 2) {
[DBG]: PS C:\scripts>

Now that you’re in debug mode, you’re effectively at the point where the

breakpoint is set within the script, and you can obtain values of the variables

used within it. To debug the script, you can start writing the values of vari-

ables to the screen this way:

 [DBG]: PS C:\scripts> Write-Host $sum
1
[DBG]: PS C:\scripts> Write-Host $number1
1
[DBG]: PS C:\scripts> Write-Host $number2
2

The variable $sum has a value of 1 even though $number1 has the correct

value of 1 and $number2 has the correct value of 2. This result points to a

problem with the line that’s performing the addition, so you copy and paste

this line of code from Listing 17-2 into the debug prompt and display the

value of $sum again:

[DBG]: PS C:\scripts> $sum = $number1 + $numer2
[DBG]: PS C:\scripts> Write-Host $sum
1

Same problem. This time, you manually enter the command that you want

to run:

[DBG]: PS C:\scripts> $sum = $number1 + $number2
[DBG]: PS C:\scripts> Write-Host $sum
3

Finally, the correct answer! You look back at the code and realize that your

$number2 is misspelled. You fix the problem, and now the script works

perfectly. But wait — you’re still at the debug prompt.

DropBooksDropBooks

240 Part IV: Controlling Where and How You Operate PowerShell

 To exit the debugger, press c; then press Enter. This action quits the debugger

and runs the rest of the script as normal.

Setting fancier breakpoints
You’re not limited to setting a breakpoint based on a given line in your script.

You can also set a breakpoint whenever a certain command is reached or

even when a certain variable is encountered. Here’s how you can set a break

point whenever the Get-WmiObject Cmdlet is encountered:

Set-PSBreakpoint -script myscript.ps1 -command “Get-WMIObject”

You can even specify multiple commands in which the breakpoints should be

set. Just specify each command, separating the commands with commas, like

this:

Set-PSBreakpoint -script myscript.ps1 -command “Get-WMIObject,Write-Host,Get-
Service”

If you’re interested in a particular variable, you can also use Set-
PSBreakPoint to set a breakpoint every time that variable is found. Here’s

how you can set a breakpoint whenever the variable outstring is encoun-

tered in myscript.ps1:

Set-PSBreakpoint -script myscript.ps1 -variable “outstring”

 Just as you do with commands, you can set breakpoints at multiple variables

by separating variable names with commas.

Issuing debugger commands
Breakpoints only serve as control points to stop the execution of code so

that you can see what it’s doing. Other than simply querying for variable

values while in debug mode, you also have a set of debugger commands you

can use to control how you proceed from a breakpoint. These commands are

listed in Table 17-1. To run a command, you can either type the command

alias or the full name of the command and then press Enter.

DropBooksDropBooks

241 Chapter 17: Smashing Those Bugs

Table 17-1 Debugger Commands
Command
Alias

Command
Name

Description

s Step Runs the next statement and stops. It runs the next
statement, not the next lines, because the next
statement may be several lines away if the current
statement is a logic statement. If the next line is a
function, the debugger goes into the function and
runs the next statement in that function.

v Step-Over Runs the next statement and stops. If the command
is a function, however, unlike the regular Step
command, it runs the function and then stops. In
other words, it treats the entire function as one
statement.

o Step-Out Goes to the next statement after the function is
done (if you’re currently in a function). If you run
this command in the main portion of the script,
it goes to the end unless it’s stopped by another
breakpoint.

c Continue Continues with the script until it reaches the end or
until another breakpoint is reached.

<Enter> <Enter> Repeats the preceding command, if it was a Step
or Step-Over command.

?,h ?,h Displays the debugger’s help text.

Listing all breakpoints
Because breakpoints are defined and stored for only as long as the current

Windows PowerShell window is active, any breakpoint that you set doesn’t

actually make any changes in the underlying code that you’re trying to debug;

it doesn’t try to sneak in some hidden characters or modify your scripts in

any way. Windows PowerShell stores breakpoints in memory, and any time

you run a command or script that matches one of these breakpoints, Windows

PowerShell calls on the debugger.

DropBooksDropBooks

242 Part IV: Controlling Where and How You Operate PowerShell

Because you can set as few or as many breakpoints as you want, you prob-

ably want to find out what breakpoints are defined in your current session.

You do this by using the Get-PSBreakpoint Cmdlet. This Cmdlet returns

each breakpoint that you’ve defined along with its various properties, such

as whether it’s enabled (covered in the next section), its unique identifier

within the session, and the script to which it applies.

Disabling and enabling breakpoints
Breakpoints are great; they’re like roadblocks to keep your code from getting

too far without being inspected. Often, you’ll set up a bunch of breakpoints

for testing and make changes in the script as you find problems. When you

think that you’ve fixed all the bugs, you’ll want to run the script without the

breakpoints getting in the way. One solution is to delete all the breakpoints,

but that may not be a good idea. You could find another problem and need to

use those same breakpoints, and if you’ve deleted them, you’ll have to spend

time re-creating them.

Instead, you can simply disable some or even all of the breakpoints in your

script. Disabling leaves a breakpoint’s definition intact but deactivates it

from use. The easiest way to disable a breakpoint starts with knowing what

its breakpoint ID is. You can get the ID of a breakpoint by running Get-
PSBreakpoint. When that you have the ID, you can disable it by running the

following command (assuming that the ID is 7):

Disable-PSBreakpoint -id 7

If you simply want to disable all breakpoints in your session, you can pipe

the output of Get-PSBreakpoint to Disable-PSBreakpoint directly, like

this:

Get-PSBreakpoint | Disable-PSBreakpoint

The reverse process, of course, is enabling disabled breakpoints. It doesn’t

take too much creativity to guess what this command looks like. If you

guess that it’s Enable-PSBreakpoint, you’re already thinking like a true

Windows PowerShell user. Here’s how you enable a disabled breakpoint

(again assuming that the breakpoint ID is 7):

Enable-PSBreakpoint -id 7

DropBooksDropBooks

243 Chapter 17: Smashing Those Bugs

You use the same technique to enable all breakpoints that you use to disable

all breakpoints: piping the output of Get-PSBreakpoint into the Enable-
PSBreakpoint Cmdlet.

Removing breakpoints
All breakpoints in a session are cleared as soon as you close the Windows

PowerShell window, so you don’t need to remove them explicitly. At times,

however, you want to remove breakpoints without closing the window, such

as when you create a breakpoint with the wrong parameters (such as the

wrong line in a script). Sure, you can disable the breakpoint if it’s not needed,

but it’s probably best to remove it to prevent any confusion for yourself later.

Fortunately, removing breakpoints is just as easy as using the Remove-
PSBreakpoint Cmdlet. Just like Enable-PSBreakpoint and Disable-
PSBreakpoint, Remove-PSBreakpoint needs either a breakpoint ID or a

breakpoint object; then it happily removes the breakpoint for you, as in this

example:

Remove-PSBreakpoint -id 7
Get-PSBreakpoint | Remove-PSBreakpoint

 You can’t undo the deletion of a breakpoint. If you accidentally delete the

wrong breakpoint, you have no magical Restore-PSBreakpoint command

to rescue you. Instead, you have to re-create the breakpoint yourself.

DropBooksDropBooks

244 Part IV: Controlling Where and How You Operate PowerShell

DropBooksDropBooks

Part V
Real-World
Windows

Administration
Using PowerShell

DropBooksDropBooks

In this part . . .

You’ve now seen all the bits and pieces that make up

Windows PowerShell, so it’s time to apply these con-

cepts to real-world scenarios. This part is a collection of

chapters that include scripts addressing the various

needs you’re bound to face on a regular basis at work.

Chapter 18 shows you how to monitor Windows event

logs, drive space and services. Interacting with the

Windows registry is covered in Chapter 19. You discover

how to query and interact with Active Directory in

Chapter 20. Chapter 21 deals with system status and man-

aging security, and Chapter 22 provides tips on convert-

ing your old Windows Shell or Windows Scripting Host to

Windows PowerShell.

DropBooksDropBooks

Chapter 18

Mission Control: All Systems Go
In This Chapter
▶ Making sure you have enough drive space

▶ Translating System.IO.DriveInfo to Windows Management Infrastructure

▶ Keeping track of Windows services

▶ Scanning your event logs for problems

▶ Using Windows Management Infrastructure to query event logs

Although it’s fun to gain knowledge of how to display stuff onscreen and

do tricks like counting to 100 by using a for loop, in reality, you’re

probably reading this book for one of two reasons. The first one is that

you’re truly interested in discovering what Windows PowerShell is all about

and know that the For Dummies series helps you get there faster. The other

highly likely possibility is that your boss told you two days ago that he needs

you to automate some task by using Windows PowerShell, and you’re using

this book as a crash course.

From this chapter forward, I focus on bringing together everything that I’ve

talked about so far and applying it to real-world scenarios. (Hey, you never know;

I might already have the script you’re looking for.) In this chapter, I cover

some scripts that you can use to make sure your systems are ready to go.

Monitoring Drive Space
Even with cheap storage readily available everywhere, your computer or

your servers always run out of disk space at the worst time possible. What

you need is a script that can query the amount of drive (disk) space you have

and let you know when that amount passes a certain threshold. Your script

can display a pop-up window or send you an e-mail when any of the drives on

your system has less than 5 percent free space, for example. Listing 18-1 pro-

vides a script that performs just that task.

DropBooksDropBooks

248 Part V: Real-World Windows Administration Using PowerShell

Listing 18-1: Monitor Free Disk Space
function WarningPopup([string]$message)
{
 $oShell = New-Object -comobject WScript.Shell
 $ret = $oShell.popup($message,0,”Warning”,0 + 48)
}

$freespace_threshold = 5

Write-Host “Performing disk space check...”
Write-Host “Looking for disks with less than $freespace_threshold free space”

$drives = [System.IO.DriveInfo]::GetDrives()
foreach($drive in $drives)
{
 if (($drive.DriveType -eq “Fixed”) -and ($drive.IsReady -eq $true))
 {
 $freespace = [Math]::Round(($drive.TotalFreeSpace / $drive.TotalSize) *

100,2)

 if ($freespace -lt $freespace_threshold)
 {
 WarningPopup “$drive.Name - $freespace % free space”
 }
 }
}

This script first defines a function called WarningPopup that takes a string

and then displays that string onscreen as a pop-up window. Because Windows

PowerShell doesn’t have a built-in method for displaying a pop-up window,

you use the New-Object Cmdlet to create an instance of WScript.Shell

(in other words, Windows Scripting Host). Then you can use the shell’s

popup method to display the message onscreen. The popup method takes

four parameters:

 ✓ The string to display

 ✓ The number of seconds to display the message

 ✓ The title of the dialog box

 ✓ A final value that defines the dialog-box type

The first parameter is the only one that’s required; the rest are optional.

The dialog-box type specifies what kind of buttons and icons should be used

in the dialog box. The buttons that can be used are defined as numeric values,

as are the icon types. To select what you want, just add the button-type value

of your choice to the icon type that you want to display. Listing 18-1 uses the

value 0 + 48 to say that you want to display an OK button and a warning

DropBooksDropBooks

249 Chapter 18: Mission Control: All Systems Go

icon (a yellow triangle with an exclamation mark). Table 18-1 lists the

possible values.

 The WScript.Shell popup method returns a value that tells you which

button was clicked. In this script, you simply store the value in a variable but

don’t use it. If you don’t assign this value to a variable, the script displays the

value on the console instead, which isn’t what you want. Table 18-2 lists the

possible return values of the popup method.

Table 18-1 Dialog-Box-Type Values for popup Method
Value Description

0 OK button

1 OK and Cancel buttons

2 Abort, Retry, and Ignore buttons

3 Yes, No, and, Cancel buttons

4 Yes and No buttons

5 Retry and Cancel buttons

16 Error icon (stop sign)

32 Question-mark icon

48 Warning icon (exclamation point)

64 Information icon

Table 18-2 Return Values for popup Method
Value Description

-1 A timeout value was specified and reached before
a button was clicked.

0 The dialog box was closed without a button click.

1 OK button

2 Cancel button

3 Abort button

4 Retry button

5 Ignore button

6 Yes button

7 No button

DropBooksDropBooks

250 Part V: Real-World Windows Administration Using PowerShell

Next, the script defines a variable called $freespace_threshold that sets

the percentage of free space on each drive before generating a warning. Most

of the time, you’ll want to set this variable between 5 percent and 10 percent,

which should give you ample time to react and clean up space if you can or

increase the amount of storage.

Then the script contains this peculiar-looking line:

$drives = [System.IO.DriveInfo]::GetDrives()

Remember that because Windows PowerShell is built on top of the Microsoft

.NET Framework, you can use any of the .NET classes within your code. This

example script uses the System.IO.DriveInfo class because it conve-

niently has a GetDrives method that returns a collection of objects repre-

senting the drives on your system.

The next section of code takes advantage of the foreach loop construct to

go through each drive in the system and check the space. An if statement

checks the type of each drive and whether it’s ready before making any cal-

culations, as follows:

if (($drive.DriveType -eq “Fixed”) -and ($drive.IsReady -eq $true))

This line of code is important for a few reasons. First, GetDrives returns all

your drives, including removable drives such as CD-ROMs and USB memory

sticks, as well as mapped network drives. In general, you’re going to be inter-

ested only in the fixed drives (hard drives) on your system, and as a sanity

check, you’ll want to make sure that those drives are ready and accessible.

Now, to figure out the percentage of free space, you simply divide the total

amount of free space by the total amount of disk space. This value may end

up looking something like this: 0.3542413. To make things a bit easier to

work with, multiply this value by 100 to get the percentage. This value is still

more precise than you may care for, so use the [Math]::Round method to

round off the value. The second parameter of the Round method indicates

the number of decimal places to which you want to round the value. This

example uses 2 as a value, because this value is about as precise as you may

want to be:

$freespace = [Math]::Round(($drive.TotalFreeSpace / $drive.TotalSize) * 100,2)

Now that you have this value, which looks like 35.42, you can perform

a straightforward “less than” comparison between this value and the

$freespace_threshold value to see whether this particular drive’s free

space is below the given threshold. If it is, PowerShell displays the warning

pop-up message onscreen.

DropBooksDropBooks

251 Chapter 18: Mission Control: All Systems Go

Converting to Windows Management
Infrastructure from System.IO.DriveInfo

I use the System.IO.DriveInfo class in the previous section to get all the

drive information because it’s very straightforward to use. What it lacks is

the ability to query the drive information of remote computers, and this lack

is one advantage of using Windows Management Infrastructure (WMI) over

some of the built-in System classes. The code remains logically the same

except that you have to replace the method for getting the drive information,

and the drive property names change as well. Listing 18-2 shows a script that

uses that WMI to monitor free disk space.

Listing 18-2: Monitor Free Disk Space Using WMI
function WarningPopup([string]$message)
{
 $oShell = New-Object -comobject WScript.Shell
 $ret = $oShell.popup($message,0,”Warning”,0 + 48)
}

$freespace_threshold = 100
$compname = “.”

Write-Host “Performing disk space check...”
Write-Host “Looking for disks with less than $freespace_threshold free space”

$drives = Get-WMIObject Win32_Volume -ComputerName $compname | Select-Object Dri
veLetter,Capacity,FreeSpace,DriveType

foreach($drive in $drives)
{
 if ($drive.DriveType -eq 3)
 {
 $freespace = [Math]::Round(([Int64]$drive.FreeSpace / [Int64]$drive.

Capacity) * 100,2)

 if ($freespace -lt $freespace_threshold)
 {
 WarningPopup (($drive.DriveLetter) + “ - $freespace % free space”)
 }
 }
}
Write-Host “Script Complete!”

In this section, I focus on the few things that change between Listing 18-1 and

Listing 18-2.

DropBooksDropBooks

252 Part V: Real-World Windows Administration Using PowerShell

First, Listing 18-2 adds a variable called $compname. You can use WMI to

change $compname to whatever computer you want to query. (Note: A period

by itself means the local machine.) Next is the most important change, which is

using Get-WMIObject rather than System.IO.DriveInfo, as shown here:

$drives = Get-WMIObject Win32_Volume -ComputerName $compname | Select-Object Dri
veLetter,Capacity,FreeSpace,DriveType

You use Get-WMIObject to query the Win32_Volume WMI class, which

is a WMI class that represents storage on a computer. This example uses

the -Computername parameter to specify the computer that the script will

query for the information. Get-WMIObject returns all the data associated

with a given WMI class. You can reduce the results of Get-WMIObject to only

the parameters you want by passing the Cmdlet through Select-Object

and then using it to pull just the DriveLetter, Capacity (total disk space),

FreeSpace, and DriveType properties. The resulting property values all

maps out directly with the properties returned by System.IO.DriveInfo, so

you simply replace the references to each property name in the script with

these new property names.

You may have noticed a few gotchas. For starters, Win32_Volume doesn’t

have an IsReady flag (which is an indicator to show that the volume is ready

for access), so you’ll have to do without it for now. Also, the code gives the

DriveType as an integer value, not as plain text that’s easy to understand.

The Local Disk (otherwise known as Fixed) drive type is the same as the

value of 3, so the code compares the drive type with this value instead. Table

18-3 lists all the drive-type values.

Table 18-3 Win32_Volume WMI Class DriveType Property
Value Definition

0 Unknown

1 No root directory

2 Removable disk

3 Local disk

4 Network drive

5 Compact disk

6 RAM disk

Something else peculiar about this version of the script is that it explicitly

casts (see Chapter 5 for more on casting) the Capacity and FreeSpace

values into Int64 (64-bit integer) before dividing them. The data type returned

by WMI for FreeSpace and Capacity is UInt64 (unsigned 64-bit integer).

DropBooksDropBooks

253 Chapter 18: Mission Control: All Systems Go

The problem is that Windows PowerShell currently doesn’t support division

of UInt64 values, so you have to convert these values to a data type that

PowerShell does support. This example uses Int64 because it’s the next-

best thing.

 Converting from UInt64 to Int64 can cause problems if the drive capacity

(in bytes) is greater than the maximum value of an Int64. The good thing is

that Int64 can store a value up to 9,223,372,036,854,775,807, which is roughly

equivalent to 8.4 million terabytes.

Managing Windows Services
When it comes to checking for system status, finding out whether key

Windows services are running comprises most of what you need to keep

track of. If the server is simply acting as a print server, this task can be as

simple as making sure that the spooler service is up and running. If the

server hosts much more complex services, such as Microsoft Exchange or

SQL Server, you may need to keep track of a long list of services and depen-

dent processes.

Managing Windows services effectively involves monitoring for service state

and taking some action based on that state. In this section, I focus on check-

ing for service state. This script is designed to check a set of services you’re

interested in and then display the names and states of the services that

aren’t running:

$arrServices = (“spooler”,”winmgmt”)
$strCompname = “.”

$colServices = Get-Service $arrServices -Computername $strCompname
foreach($objService in $colServices)
{
 if ($objService.Status -ne “Running”)
 {
 Write-Host ($objService.Displayname + “ is “ + $objService.Status)
 }
}

You have to define the list of services you want to monitor in the

$arrServices variable, and you have to define this list of services as an

array. To do that, just comma-separate the service names and enclose the

whole thing in parentheses. In this example, you’re interested in only the

Print Spooler and Windows Management Instrumentation services for now.

This code also adds the ever-powerful capability for querying services on

a remote machine by defining a $strCompname variable. Just like in Get-
WMIObject, a single period means “this machine.”

DropBooksDropBooks

254 Part V: Real-World Windows Administration Using PowerShell

This information is passed to Get-Service, which happily goes out and

fetches the information about the services you specified. The resulting collec-

tion is stored in $colServices. Then you use a foreach loop to go through

the services and find out whether a service is running by querying its Status

property. If a service isn’t running, the script displays the service’s name and

its status.

 A big difference exists between service names and service display name. A

service display name is the name you see when you go into the Services

management console in Windows; it’s usually very descriptive and often

contains spaces. The service name is much shorter (typically, a single word

with no spaces); Windows uses this name internally to name the service. By

default, you have to use this internal short name when you use Get-Service

to refer to services. You can use the display name if you want, but you need to

specify the name by using the -DisplayName parameter of Get-Service.

If your task is to monitor your services, this script usually is enough. The

only enhancement that you might want to make is to send an e-mail or

something letting you know that the service on a particular computer is

not running rather than just simply displaying it on the screen.

Sometimes, you might have a service that you know fails periodically. This

situation is more common among poorly written services provided by third-

party applications (otherwise known as crapware). The usual fix is restart-

ing the service if it goes into a stopped state. Although you can configure

this behavior directly by modifying the service properties so that it starts

up automatically whenever the service stops, you may prefer to do this job

yourself — especially if you need to do other things before restarting, such

as deleting some temporary files that could prevent the service from starting

up successfully.

Controlling services
Now that you can check for service status, it’s time to change the script a

bit so that it automatically starts the service when it detects that the service

isn’t running. You may think that because you have Get-Service, this task

is as simple as running Start-Service. Well, that assumption is both right

and wrong. Yes, you can use Start-Service to accomplish the task, but the

caveat is that Start-Service doesn’t have a -ComputerName parameter to

run against a remote computer.

One solution is to use WinRM (Windows Remote Management, which I discuss

in Chapter 15) and run Start-Service as a remote command. The other,

more generic solution is to use WMI to start the service.

DropBooksDropBooks

255 Chapter 18: Mission Control: All Systems Go

 Although WMI is generally used for querying information, you can also use it

to enact certain actions. With this knowledge in hand, you can rewrite the

script so that it attempts to bring the service up when it detects that the ser-

vice isn’t running. Listing 18-3 shows how you can use WMI to query the state

of a service and start it if it isn’t running.

Listing 18-3: Using WMI to Make Sure a Service Is Always Running
$arrServices = (“spooler”,”winmgmt”)
$strCompname = “.”

$colServices = Get-Service $arrServices -Computername $strCompname
foreach($objService in $colServices)
{
 if ($objService.Status -ne “Running”)
 {
 Write-Host ($objService.Displayname + “ is “ + $objService.Status)
 Write-Host (“Starting “ + $objService.Displayname)
 $result = (Get-WMIObject -computer $strCompname Win32_Service -Filter

(“Name=’” + $objService.Name + “’”)).StartService()
 do
 {
 Start-Sleep -s 1
 $currentState = (Get-WMIObject -computer $strCompname Win32_Service

-Filter (“Name=’” + $objService.Name + “’”)).State
 } while ($currentState -eq “Start Pending”)

 if ($currentState -eq “Running”)
 {
 Write-Host -foregroundcolor Green (“Successfully started “ +

$objService.DisplayName)
 }
 else
 {
 Write-Host -foregroundcolor Red (“Failed to start “ + $objService.

DisplayName)
 }
 }
}

To access Windows services with WMI, you use the Win32_Service WMI class.

Objects of the Win32_Service class contain a method called StartService

that can be called to start a service. To do this, first you must get an object

representing that service. Because you already have the service name and

computer name, you simply need to pass this information to the Get-WMI
Object Cmdlet. The important part is the use of the -Filter parameter to

specify the exact name of the service you’re interested in. When you have the

object, you call the StartService method to start the service. You store

DropBooksDropBooks

256 Part V: Real-World Windows Administration Using PowerShell

the return value of this call in a variable only to suppress the default behav-

ior of displaying the result in the console, like this:

$result = (Get-WMIObject -computer $strCompname Win32_Service -Filter (“Name=’”
+ $objService.Name + “’”)).StartService()

Just because you start a service doesn’t mean that it’s actually started. Depend-

ing on the service you’re trying to start, actual start-up can be as quick as a

second or two or as long as a few minutes if the service is very complicated

(the Microsoft Exchange Information Store starting up with many large data

stores to bring online, for example). From the time you start the service until

the service enters Started state (or even Stopped state, if it can’t start for

some reason), it goes into a Start Pending state.

To enable the script to handle this scenario, you use a do/while loop to

query for the state of the service. The loop continues to query until the state

is no longer Start Pending, after which it checks to see whether the serv-

ice is running. If it’s running, the service has successfully started; otherwise,

start-up has failed, and you probably have to look into the service yourself.

(Perhaps a service logon failure occurred due to a password change, for

example.)

Notice that Listing 18-3 uses the Start-Sleep Cmdlet. This Cmdlet pauses

the script for a certain amount of time before continuing. It’s perfect for some-

thing like polling a service, because you don’t want to keep doing this over and

over; instead, you want to pause the script for a while and then check again.

Start-Sleep allows you to give the pause time in seconds (the default inter-

val, also used with the -s parameter) or milliseconds (with the -m parameter).

 Use the Start-Sleep Cmdlet whenever you want your script to pause for a

specific amount of time.

Configuring services
If you use a script to automate service recovery, one thing you might encounter

is a service that is having problems starting up. In some cases, you might want

to automatically change the startup type of the service so that is doesn’t run

at startup. You do this by setting the start-up type of the service to Manual

or Disabled. For the purpose of this example, assume that all the services

you’re monitoring in Listing 18-3 are set to start automatically whenever the

system starts. Suppose that you change the script one last time. This time,

instead of having the script display a message that the service failed to start,

it sets the service to the Manual start-up type as soon as it encounters the

error. Here’s the section of code that changes:

DropBooksDropBooks

257 Chapter 18: Mission Control: All Systems Go

if ($currentState -eq “Running”)
{
 Write-Host -foregroundcolor Green (“Successfully started “ + $objService.

DisplayName)
}
else
{
 Write-Host -foregroundcolor Red (“Failed to start “ + $objService.DisplayName)
 Set-Service $objService.Name -startupType Manual
 Write-Host (“Set the startup type of “ + $objService.DisplayName + “ to

manual”)
}

You can use the Set-Service Cmdlet to change the display name, description,

and start-up type for a given service.

Checking Your Event Logs
Combing your event logs can be highly useful, but it can also result in infor-

mation overload. Depending on how intense your logging is, you could have

anywhere from a few to several hundred log entries being written in any given

hour. Checking your event logs for errors is a good way of making sure that

your system is running as it should, however. In particular, you should pay

attention to any errors being generated in the System Log, as they could indi-

cate a current problem or warn that something smelly is about to hit the fan.

The most straightforward way to comb event logs is to use the Get-Event
Log Cmdlet. Just specify the name of the log file and what you’re interested

in getting, and you’re all done. Listing 18-4 shows a simple script that gets

any Error event-log entries that have been generated in the System Log in

the past hour.

Listing 18-4: Using Get-EventLog to Check the Event Log
$objEvents = Get-EventLog -logname System -EntryType Error | Where-Object

{[DateTime]::Now.AddHours(-1) -le $_.TimeGenerated}
if ($objEvents.Count -gt 0)
{
 foreach($event in $objEvents)
 {
 Write-Host (“Time : “ + $event.TimeGenerated)
 Write-Host (“Event ID: “ + $event.EventID)
 Write-Host (“Computer: “ + $event.MachineName)
 Write-Host (“Source : “ + $event.Source)
 Write-Host (“Message : “ + $event.Message + “`n”)
 }

(continued)

DropBooksDropBooks

258 Part V: Real-World Windows Administration Using PowerShell

Listing 18-4 (continued)
}
else
{
 Write-Host “No entries to report!”
}

The heart of this code is the Get-EventLog Cmdlet. You specify the log

name and the entry type by using these respective parameters, but this code

returns all the log entries matching this criteria. To filter the result to just

those events that were generated in the past hour, you have to compare the

TimeGenerated property of the event-log entry with the time one hour ago

and use Where-Object to refine the results.

 The best way to calculate a time period before and after the current time is to

use the [DateTime]::Now method and then use one of its Add methods to

add or subtract (by providing a negative value) the appropriate amount of

time from now. Not only is this technique convenient, but also, the resulting

value is already a DateTime data type, so you can use it directly to compare

other DateTime objects, such as the event log’s TimeGenerated property.

The rest of the code shows how you can extract the relevant bits of informa-

tion about the problem that you may need. Listing 18-4 uses a simple Write-
Host statement, but it could just as easily be a function that generates a

Web-based report or an e-mail message. Most organizations I’ve worked with

use just this kind of script to keep an eye on potential problems.

 This script checks for events within the past hour, but if you want more imme-

diate notification, you can set it to look for events in the past 15 minutes and

use Task Scheduler to run the script every 15 minutes.

The main downside to Get-Event is that it doesn’t have built-in capability to

run against a remote host. Also, it works only in Windows Vista and Windows

Server 2008 and later running Windows .NET Framework 3.5 or later. The real-

ity is that plenty of Windows XP and Windows Server 2003 servers will be out

there for some time, so you need a solution that scales to those machines.

Querying EventLogs Using WMI
The solution for querying event logs remotely probably won’t be all that sur-

prising to you: Just use WMI. WMI truly is the key to accessing most informa-

tion about Windows in a very standardized and straightforward manner. All

the Windows event logs are accessed through the Win32_NTLogEvent WMI

DropBooksDropBooks

259 Chapter 18: Mission Control: All Systems Go

class. This class is one of the oldest WMI classes, which you can tell simply

by its NT reference (meaning Windows NT). Listing 18-5 shows how you can

use WMI instead of Get-EventLog to query for Event Log entries.

Listing 18-5: Using WMI to Query the Event Log
$compname = “.”
$objEvents = get-wmiobject -ComputerName $compname -query “select * from Win32_

NTLogEvent where LogFile=’System’ AND Type=’Error’” | Where-Object
{[DateTime]::Now.AddHours(-1) -le [System.Management.ManagementDate
Timeconverter]::ToDateTime($_.TimeGenerated)}

if ($objEvents.Count -gt 0)
{
 foreach($event in $objEvents)
 {
 Write-Host (“Time : “ + [System.Management.ManagementDateTimeconverter]

::ToDateTime($event.TimeGenerated))
 Write-Host (“Event ID: “ + $event.EventIdentifier)
 Write-Host (“Computer: “ + $event.ComputerName)
 Write-Host (“Source : “ + $event.SourceName)
 Write-Host (“Message : “ + $event.Message + “`n”)
 }
}
else
{
 Write-Host “No entries to report!”
}

This code runs substantially more slowly than the version using Get-EventLog

in Listing 18-4 (refer to “Checking Your Event Logs,” earlier in this chapter),

but it has the benefit of being able to query event logs remotely. Rather than

specifying a bunch of discrete properties, you can opt to specify a query

to Get-WMIObject to select exactly the information you’re interested in.

The other difference is that the TimeGenerated property returned by WMI

isn’t in a nice DateTime format. Instead, the date and time look something

like 20080616054859.000000-000, which is a standard date-and-time

format defined by the Distributed Management Task Force (DMTF) Common

Information Model (CIM) specification. (Phew, that was a mouthful!) To con-

vert the date and time value returned through WMI to a regular DateTime

object, you use the [System.Management.ManagementDateTimeconver
ter]::ToDateTime method. When you convert the TimeGenerated prop-

erty to a standard DateTime object, you can work with it just as you do in

the preceding script.

DropBooksDropBooks

260 Part V: Real-World Windows Administration Using PowerShell

DropBooksDropBooks

Chapter 19

Taming the Windows Registry
In This Chapter
▶ Glancing over the registry structure

▶ Establishing a connection with the registry

▶ Interpreting keys and values

▶ Creating keys and values

▶ Managing the registry

The heart and soul of Windows is the registry, a centralized repository of

configuration information ranging from hardware driver information to

application preferences. If you manipulate the registry correctly, you can get

Windows and most applications to obey your command, but get it wrong,

and you could end up with a system that won’t even boot. As long as you

stay away from changing things that you don’t understand fully, you should

be set. Windows PowerShell offers a whole slew of ways you can access and

manipulate the Windows registry, and the best part is that it’s really easy.

In this chapter, you use both some built-in Cmdlets as well as a .NET class

called Microsoft.Win32.RegistryKey to query and manipulate the

Windows registry. It’s often said that he who masters the Windows registry

masters Windows, so having the ability to automate registry changes with a

few keystrokes brings you one step closer to reaching that goal.

 I haven’t been using too many warnings in this book, but this warning is really

necessary. Before making any major changes in the Windows registry, make

sure that you have it backed up somewhere safe. Making a backup is espe-

cially important when you’re using scripts to modify the registry, because a

problem or flaw in your code could result in massive changes being made very

quickly, and if you’re unlucky enough to change the wrong thing, you may not

be able to boot correctly.

DropBooksDropBooks

262 Part V: Real-World Windows Administration Using PowerShell

Following the Registry Tree
The Windows registry is made up of the five registry hives (each of the main

sections of the registry is called a hive) listed in Table 19-1. The registry is

structured so that each hive organizes the way information is stored. Some

hives exist to store settings specific to the machine; others are designed to

manage user-based settings. Some hives are used for application settings;

others store hardware settings. A registry key is merely a branch within the

tree that can contain other keys or values. You can think of registry keys as

being like folders in a file system and values as being like files. You can view

and edit the registry using the Registry Editor as seen in Figure 19-1.

 To access the registry editor, select Start➪Run, type in regedit.exe, and

press OK.

Table 19-1 The Registry Hives
Name Purpose

HKEY_CLASSES_ROOT Contains information regarding file types as
well as registration and configuration data
for Component Object Model (COM) objects
and other automation objects.

HKEY_CURRENT_USER Contains user-specific application and
system settings related to the currently
logged-on user.

HKEY_LOCAL_MACHINE Contains machine-specific application and
system settings for the local machine.

HKEY_USERS Contains user-specific application and
system settings for all loaded user profiles.

HKEY_CURRENT_CONFIG Contains the configuration data for the cur-
rently loaded hardware profile.

Every registry key contains a default value, which is the value returned when

you query a registry and don’t specify the value you’re interested in. Registry

values consist of a name, a type, and the data (which is really the value of the

registry value, but because that sounds ridiculous, Microsoft decided to be

creative and call it data).

Registry values can be any of a few data types. Table 19-2 lists the most

common ones.

DropBooksDropBooks

263 Chapter 19: Taming the Windows Registry

Figure 19-1:
The Registry

Editor and
the five reg-

istry hives.

Table 19-2 Registry Types
Data Type Description

REG_SZ Standard string data type

REG_BINARY Any kind of binary data

REG_DWORD 32-bit number

REG_QWORD 64-bit number

REG_MULTI_SZ Multivalued string

REG_EXPAND_SZ String that contains unexpanded environment
variables (such as %SYSTEMROOT% to dynami-
cally indicate the path to the Windows directory)

Connecting to the Windows Registry
If you’ve worked with Windows for any amount of time, I’m sure that you

already know (or at least have heard) that you can manage the Windows reg-

istry by using the Windows Registry Editor (regedit.exe). Unfortunately,

this built-in Registry Editor isn’t designed for automation other than the abil-

ity to import .reg (registry) files to make changes.

DropBooksDropBooks

264 Part V: Real-World Windows Administration Using PowerShell

Windows PowerShell gives you a couple of options for connecting to and

managing the registry. For starters, the registry is fully accessible as a

PowerShell drive, which means that you can go into registry keys and subkeys

(keys that are contained within other keys, just like subfolders are folders

within other folders) just as though you were traversing your file system. The

other option is using the Microsoft.Win32.RegistryKey class.

 The main reason to use the Microosft.Win32.RegistryKey class instead

of the virtual drive is to query or manipulate the registry of a remote host

that’s not running Windows PowerShell.

 HKEY_CURRENT_USER is really just a shortcut to the subkey of HKEY_USERS

containing the user’s security identifier (SID). Also, a .DEFAULT subkey is

used to generate the HKEY_CURRENT_USER tree for any new users who log on

to the system.

Navigating the registry by using
the PowerShell drives
The whole drive-letter concept dates back to the MS-DOS days, when each

drive was assigned a unique drive letter. Each drive represents some logical

partitioning of storage. Windows PowerShell takes this concept a step further

by encapsulating the notion of a drive into a PowerShell drive. Extending the

notion of a drive allows Windows PowerShell to access not only the usual

drive letters through the console, but also some additional things that it

knows it can represent in a hierarchal/tree structure. You can access aliases,

certificates, environment variables, functions, regular variables, and even the

registry in a manner similar to the way you access file systems. To see what

drives you have available, run the Get-PSDrive Cmdlet. The output looks

something like this:

PS C:\> get-psdrive

Name Provider Root CurrentLocation
---- -------- ---- ---------------
A FileSystem A:\
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
Env Environment
Function Function
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
Variable Variable

DropBooksDropBooks

265 Chapter 19: Taming the Windows Registry

The two drives you’re interested in are the HKCU and HKLM drives. HKCU goes

to the HKEY_CURRENT_USER registry hive; it represents the portion of the

registry tied to your Windows profile and contains user-specific settings.

HKLM goes to the HKEY_LOCAL_MACHINE registry hive and contains all the

machine-specific settings. Only HKEY_CURRENT_USER and HKEY_LOCAL_
MACHINE are accessible via a PowerShell drive; the other registry hives can’t

be accessed this way.

 You can access the HKEY_CLASSES_ROOT registry hive indirectly by going

through HKLM:\Software\Classes. It’s really the same thing.

Getting into the registry drive is as easy as using the CD command to change

directories (which is really just aliased to the Set-Location Cmdlet). Then

you can use DIR (aliased to the Get-ChildItem Cmdlet) to list the contents

of each key. The SKC property shows the number of subkeys that are below

this key, and the VC property shows the number of values. The next com-

mand sequence shows how you can navigate through the registry just as if it

was another drive within your filesystem:

PS C:\>cd HKLM:
PS HKLM:\>cd software
PS HKLM:\software>cd microsoft
PS HKLM:\software\microsoft>cd windows
PS HKLM:\software\microsoft\windows>dir
 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\

microsoft\windows

SKC VC Name Property
--- -- ---- --------
 68 7 CurrentVersion {SM_GamesName, SM_ConfigureProgramsName,

CommonFilesDir, DevicePath...}
 0 2 HTML Help {IMTCTC.CHM, IMTCEN.CHM}
 1 0 ITStorage {}
 1 2 Tablet PC {IsTabletPC, DeviceKind}
 2 0 TabletPC {}
 3 1 Windows Error Reporting {ErrorPort}
 1 0 Windows Search {}

Using Microsoft.Win32.RegistryKey
to access the registry
The Microsoft .NET Framework offers plenty of feature-rich classes that

you can use to do a lot of things. Considering how important the registry

is to the overall functionality of Windows, it’s no surprise that the .NET

Framework includes a whole cast of characters you can use to manipulate

DropBooksDropBooks

266 Part V: Real-World Windows Administration Using PowerShell

the registry. The most interesting of these classes is the Microsoft.Win32.
RegistryKey class because it represents registry keys, and as you know

by now, the registry key is literally the key to unlocking the power of the

Windows registry.

To query a value from the registry by using the Microsoft.Win32.
RegistryKey class, perform these steps:

 1. Use the OpenRemoteBaseKey method to connect to the desired regis-

try hive.

 2. Use to OpenSubKey method to open a specific subkey.

 3. Use the GetValue method on the subkey to get the data for a given

subkey value.

Here’s how you use these steps to query all the values in the HKEY_LOCAL_
MACHINE\Software\Microsoft\Windows\CurrentVersion\Run key:

$computername = “workstation1”

$regHKLM = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(“LocalMachine”,$comp
utername)

$regKey = $regHKLM.OpenSubKey(“Software\Microsoft\Windows\CurrentVersion\Run”)
foreach($valueName in $regKey.GetValueNames()) {
 Write-Host ($valueName + “: “ + $regKey.GetValue($valueName))
}

The OpenRemoteBaseKey method takes two parameters. The first param-

eter defines the registry hive you want to connect to, and the second param-

eter contains the name of the computer to query. Yes, you can use this

method to connect to the local machine or to any other machine to which

you have remote registry access simply by providing the computer name

here. You use “LocalMachine” to specify that you want to access the

HKEY_LOCAL_MACHINE registry hive. Here’s the list of the other values that

you can use to access the other registry hives:

 ✓ ClassesRoot: HKEY_CLASSES_ROOT

 ✓ CurrentUser: HKEY_CURRENT_USER

 ✓ LocalMachine: HKEY_LOCAL_MACHINE

 ✓ Users: HKEY_USERS

 ✓ CurrentConfig: HKEY_CURRENT_CONFIG

OpenSubKey is straightforward. You can specify the full path to the registry key

or even just put in the name of a subkey and loop through each subkey. To get

the different values within that registry key, use the GetValueNames method. If

you want to know the names of the subkeys, use GetSubKeyNames instead.

DropBooksDropBooks

267 Chapter 19: Taming the Windows Registry

Reading Keys and Values
Going through registry keys and reading values account for probably 95 percent

of all the operations done on the registry. After all, how often do you save new

settings? You’re far more likely to be querying for the value of a given setting to

use within your script. Your query could be as simple as looking up Service Pack

level to getting a list of installed software.

Using the PSDrive is a convenient way to get around, but it’s not exactly

the best for dynamically querying registry values. If you want to query the

registry values in the HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\Run registry key, for example, you can use the

Set-Location Cmdlet (alias CD) to navigate to it. Now, because it looks like

you’re browsing the file system, you’d assume that you can just run Get-
ChildItem (alias DIR) to get a list of all the registry values. Unfortunately,

that’s not the case. Get-ChildItem only lists any registry subkeys, so in

most cases, running Get-ChildItem again the Run key returns nothing.

In the PSDrive terminology, registry values aren’t children of registry keys,

but properties with name/value pairs. To get the actual registry values

within a registry key, you have to use the Get-ItemProperty Cmdlet.

This example shows how you’d use Get-ItemProperty to retrieve all

values in the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\Run registry key:

Get-ItemProperty HKLM:\Software\Microsoft\Windows\CurrentVersion\Run

What this command returns is completely dependent on what’s installed on

the machine where you run it. The bottom line is that it returns the registry

values in that key. The biggest downside of this method of retrieving registry

values is that it doesn’t return these values in a very useful structure. You’d

expect the values returned to be some kind of collection so that you can iter-

ate through that collection, but that’s not the case. Instead, to access the

value (data) of each registry value, you have to use the value name explicitly.

The operating system, Service Pack level, and some other information about

the operating system are stored in the HKEY_LOCAL_MACHINE\Software\
Microsoft\Windows NT\CurrentVersion registry key. The registry

value storing the operating system name is called ProductName, and the

value storing the Service Pack level is called CSDVersion. Here’s how you

obtain the operating system and Service Pack level (CSDVersion) by query-

ing the value through the registry:

$regkey = Get-ItemProperty “HKLM:\Software\Microsoft\Windows NT\CurrentVersion”
$os = $regkey.ProductName
$servicePack = $regkey.CSDVersion
Write-Host ($os + “ “ + $servicePack)

DropBooksDropBooks

268 Part V: Real-World Windows Administration Using PowerShell

You have to specify the registry value name directly to get its value. If you

don’t know the registry value name, you have no way to loop through it to

get its value. If you already know what registry key and registry value you’re

interested in, however, using the PSDrive to get the information is perfect

for the job; otherwise, you need to resort to using the Microsoft.Win32.
RegistryKey class instead.

Writing Keys and Values
The most common method for making changes to the Windows registry is

by using the Registry Editor. You double=click the value you want to change,

enter in the new values, and press OK to save it. A more indirect way is to

import .reg files using the Registry Editor. Because the registry is such an

integral part of Windows, every scripting and programming language that

runs on Windows has the ability to read and write to the registry. Windows

PowerShell is no exception to this.

Writing keys and values using the PSDrive
Occasionally, you need to create registry keys and write registry values as

well, most commonly to configure application settings. Creating registry keys

is as easy as creating a new folder in your file system by using the New-Item

Cmdlet. This is how you create a new registry key in HKEY_LOCAL_MACHINE\
Software called MyCompany:

New-Item HKLM:\Software\MyCompany

You create new registry values by using the New-ItemProperty Cmdlet.

This Cmdlet takes the path of the registry key where the value will be cre-

ated; the name of the registry value; the data type; and, of course, the value

itself. Here’s how you create a registry value called ConfigParams with the

DWORD value 23 in the registry key you just created:

New-ItemProperty -path HKLM:\Software\MyCompany -name ConfigParams -PropertyType
DWord -value 23

The New-ItemProperty Cmdlet supports all six property data types used

within the registry. Look at Table 19-3 to find the PropertyType value you

need to specify for each corresponding data type.

DropBooksDropBooks

269 Chapter 19: Taming the Windows Registry

Table 19-3 New-Item Property PropertyType Values
PropertyType Value Data Type

Binary REG_BINARY

DWord REG_DWORD

ExpandString REG_EXPAND_SZ

MultiString REG_MULTI_SZ

String REG_SZ

QWord REG_QWORD

If the registry value already exists, and you’re merely updating its value, you

use the Set-ItemProperty Cmdlet instead. Set-ItemProperty has the

same syntax as New-ItemProperty except that you can’t specify the

PropertyType. Set-ItemProperty can only update a registry value — it

can’t change its data type. This is how you change the ConfigParams value

to 25:

Set-ItemProperty -path HKLM:\Software\MyCompany -name ConfigParams -value 25

 If you try to use Set-ItemProperty for a registry value that doesn’t exist,

the Cmdlet creates that value for you. The only caveat is that it creates the

value as a REG_SZ data type, so if the value is supposed to be something other

than REG_SZ, you should use New-ItemProperty instead.

Writing registry values using Microsoft.
Win32.RegistryKey
Writing to a registry key by using Microsoft.Win32.RegistryKey class

requires a few extra steps:

 1. Connect to the registry, using the OpenRemoteBaseKey method.

 2. Open the subkey in writable mode.

 This is done by using the OpenSubKey method and providing the value

$true as the second parameter.

 3. Use the SetValue method to set the registry value.

DropBooksDropBooks

270 Part V: Real-World Windows Administration Using PowerShell

This method looks like a bit more work, but in practice, it’s quite easy. Using

the example from the preceding section, to create a REG_DWORD registry

value called ConfigParams with a value of 23, you do something like this:

$computername = “workstation1”

$regHKLM = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(“LocalMachine”,$comp
utername)

$regKey = $regHKLM.OpenSubKey(“Software\MyCompany”, $true)
$regKey.SetValue(‘ConfigParams’,23,’dword’)

It’s really no different from reading from the registry value, except that the

call to OpenSubKey now has an additional parameter that’s set to $true.

This second parameter defines whether the registry key will be opened in

writable mode. By default, this parameter is set to $false, so leaving it off is

fine for reading values. If you intend on making changes to any of its values

later you have to set this parameter to $true.

The SetValue method takes three parameters: the name of the registry

value, its value, and its data type. The acceptable values for the data type are

the same as those used by the PSDrive, so all the possible PropertyType

values listed in Table 19-3 can be used here as well.

Renaming and Deleting Registry
Keys and Values

Sometimes, you need to rename a registry key or flat-out delete it. Because

the registry contains settings for Windows and many of the applications

installed on the system, this is typically done to clear these settings. As you

might suspect, you can just use the Registry Editor to delete or rename regis-

try keys and values. You can even create specially formatted .reg files that

you can import to delete registry keys (but not for renaming).

 This is what a .reg file to delete the iTunes calendar helper addin registry

key would look like. You simply prefix the registry key path with a minus sign

and that tells the Registry Editor to delete the key, like this:

Windows Registry Editor Version 5.00

[-HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\Addins\iTunesAddIn.
CalendarHelper]

DropBooksDropBooks

271 Chapter 19: Taming the Windows Registry

Renaming and deleting registry keys
and Values using PSDrive
Because the PSDrive gives you the ability to treat the registry almost like a

regular file system, you do this by using the Rename-Item (alias ren) and

Remove-Item (alias del) Cmdlets, as in this example:

Rename-Item -Path HKLM:\Software\MyCompany -newname MyCorp
Remove-Item HKLM:\Software\MyCorp

 If the registry key isn’t empty, you’ll be prompted to confirm the deletion. You

can avoid this prompt by specifying the -Recurse parameter for Remove-
Item, like this:

Remove-Item HKLM:\Software\MyCorp -Recurse

You rename and delete registry values by using the Rename-ItemProperty

and Remove-ItemProperty Cmdlets, respectively. You simply need to pro-

vide the path to the registry value; the name of the value; and, in the case of

Rename-ItemProperty, the new name for the value, as in this example:

Rename-ItemProperty -Path HKLM:\Software\MyCompany -Name ConfigParams -NewName
ConfigParameters

Remove-ItemProperty -Path HKLM:\Software\MyCompany -Name ConfigParameters

Using Microsoft.Win32.RegistryKey to
delete registry keys and values
Deleting registry values by using the Microsoft.Win32.RegistryKey

class is very easy. Just use OpenSubkey to connect to the registry key

that contains the registry value you want to delete and then call the

DeleteValue method, giving it the name of the value, like this:

$computername = “workstation1”

$regHKLM = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(“LocalMachine”,$comp
utername)

$regKey = $regHKLM.OpenSubKey(“Software\MyCompany”, $true)
$regKey.DeleteValue(“MyCompany”)

Deleting registry keys is just as easy, and you can use either of two methods,

depending on what you’re trying to achieve. The first option is to simply use

the DeleteSubKey method, like this:

DropBooksDropBooks

272 Part V: Real-World Windows Administration Using PowerShell

$regHKLM.DeleteSubKey(“Software\MyCompany”)

This method deletes the subkey but only if the registry key doesn’t contain

subkeys. (The DeleteSubKey method deletes the key if it just contains values,

though.) This method is a good one to use when you don’t think that the registry

key you want to delete has any subkeys but don’t want to inadvertently delete

any subkeys that it may contain.

To delete a registry key and all its subkeys forcefully, you have to use

the DeleteSubKeyTree method. This method works the same way as

DeleteSubKey except that it deletes the key, including any subkeys and

values it contains. This method is equivalent to using the -Recurse com-

mand with the Remove-Item Cmdlet, as follows:

$regHKLM.DeleteSubKeyTree(“Software\MyCompany”)

 Currently, you have no way to rename a registry key or value by using the

Microsoft.Win32.RegistryKey class.

DropBooksDropBooks

Chapter 20

Reaching Out to Active Directory
In This Chapter
▶ Introducing Active Directory

▶ Talking to Active Directory

▶ Finding objects and attributes

▶ Manipulating object attributes

▶ Locating the raw ADSI object

Chances are that if you’re running Windows servers in your network,

you’ve already set up an Active Directory. It serves only as an account

repository (allowing users to use a single credential to get authenticated and

permissioned throughout your Windows network), but also as a central store

for all kinds of user and computer account information. Needless to say, the

importance of Active Directory within any Windows network is extremely

high, and your ability to talk to and manage it effectively should be number-

one on your priority list.

Windows PowerShell makes it very easy to talk to Active Directory (AD) because

you can take advantage of the whole slew of .NET classes specifically designed

for effective AD communications. In fact, if you like using Windows PowerShell

for interacting with Windows Management Instrumentation (WMI), you’ll find

that interacting with AD is even easier. Let’s face it — you’re reading this book

because you’re a fan of finding easy ways to do things.

In this chapter, you find out just how easy it is to get information from Active

Directory using the Active Directory Services Interface provider in addition

to a handful of Microsoft .NET classes that help you refine your search crite-

ria. You also use these same providers to modify attributes of objects within

Active Directory.

DropBooksDropBooks

274 Part V: Real-World Windows Administration Using PowerShell

A Really Brief Active Directory Primer
Active Directory is a directory service that stores information about a

Windows domain, such as user and computer account information. The

directory itself is managed by one or more domain controllers. If more than

one domain controller is used, the Active Directory information is replicated

among servers in a multimaster configuration, which means that when you

change the information on any of the domain controllers, those changes

propagate to the other servers whenever replication occurs.

I could go on and on, but I’m going to stop right here. The reality is that if

you don’t already know what Active Directory is or how it works, you really

shouldn’t be writing any scripts that touch it. For the rest of this chapter, I’m

going to assume you know enough about Active Directory to understand how

it works and that you have at least managed it manually.

 If I’ve completely lost you, but you’re still very much interested, you may want

to read Active Directory For Dummies, 2nd Edition, by Steve Clines and Marcia

Loughry (Wiley Publishing), before reading the rest of this chapter, as it might

start sounding like gibberish otherwise.

Connecting to Active Directory
To connect to Active Directory by using Windows PowerShell, you connect

using the Active Directory Services Interfaces (ADSI) and the Lightweight

Directory Access Protocol (LDAP). Yikes — that sounds awfully complicated.

Alas, it’s not! You can find the username (sAMAccountName attribute) of all

objects in your domain, for example, by running this code:

$objADSI = [adsi]””
$domain = $objADSI.distinguishedname
$userContainer = [adsi](“LDAP://cn=users,” + $domain)
foreach($child in $userContainer) {
 Write-Host $child.samaccountname
}

The first line is a really simple way to define an ADSI connection. An empty

string just tells the ADSI provider to connect to the default root directory

entry. You use this code to dynamically obtain the distinguished name (DN)

for the domain by accessing the distinguishedName property. This tech-

nique is really cool because you don’t have to hard-code your domain’s DN,

which also means that you can hand off this script to someone else and he

can run it on his domain without modification. In my test lab, this value looks

something like DC=TESTLAB,DC=LOCAL.

DropBooksDropBooks

275 Chapter 20: Reaching Out to Active Directory

You need the domain name’s DN because it’s part of every DN for every

object in Active Directory. So in general, you want to have this informa-

tion stored in a variable somewhere so that you can use it easily — which

is exactly what you do in the next part. To establish a connection to the

domain’s user container, you run this bit of code:

$userContainer = [adsi](“LDAP://cn=users,” + $domain)

This code connects to the object via LDAP and stores the reference to that

object in $userContainer. This is where having that domain DN dynami-

cally populated and stored as a variable comes in handy. If the container

is well known, like the user container, a line like this works for everyone,

regardless of what their domain names are. The users container contains any

number of items, and you can loop through them by using a simple foreach

statement. This statement loops through each item in the container and dis-

plays the value of the sAMAccountName attribute, as in this example:

foreach($child in $userContainer) {
 Write-Host $child.samaccountname
}

 You use lowercase — samaccountname — when referencing the attribute in

Windows PowerShell directly, even though the actual attribute contains a mix

of character cases.

That’s pretty easy, and it’s certainly a lot easier than using VBScript.

Querying for Objects and Attributes
Querying Active Directory for various bits of information comprises the bulk

of the operations done on it on a regular basis. After all, Active Directory is

designed to be a central directory that stores all kinds of information. It’s

often used as an authoritative source for user information, especially if you

use products that integrate heavily with it. Many Microsoft (and even third-

party) products integrate with Active Directory to use it as a source of user-

names, group information, and other important user information, and even as

an authentication source.

To query Active Directory for object and attribute information, you need to

follow a few steps:

 1. Get a reference to the DirectoryEntry where you want to start

searching.

 This reference can be the root of the domain or maybe even a particular

Organization Unit (OU).

DropBooksDropBooks

276 Part V: Real-World Windows Administration Using PowerShell

 2. Create a new System.DirectoryServices.DirectorySearcher

object, using the DirectoryEntry object from the preceding step.

 3. Define a query filter.

 This filter defines the criteria for your search and is a bit tricky because

you have to know a little bit about the syntax of a LDAP filter. (I talk

about this topic in the next section.)

 4. Define a scope.

 This scope controls whether the query is for just the objects in the

search root or for the subtree as well.

 5. Execute the search, using the FindOne or FindAll method.

 If the search returns results, extract the DirectoryEntry (in the case

of FindOne) or loop through the results and get the DirectoryEntry

(in the case of FindAll).

Here’s a fairly simple script that queries Active Directory for the first and last

name of all the user accounts that have values for these attributes:

$objADSI = [adsi]””
$domain = $objADSI.distinguishedname
$objDomain = [adsi](“LDAP://” + $domain)

$search = New-Object System.DirectoryServices.DirectorySearcher
$search.SearchRoot = $objDomain
$search.Filter = “(&(objectClass=user)(givenName=*)(sn=*))”
$search.SearchScope = “Subtree”

$results = $search.FindAll()
foreach($item in $results)
{
 $objUser = $item.GetDirectoryEntry()
 Write-Host ($objUser.displayname)
}

You’ve already seen the first part of this code, but I want you to take a close

look at the section where the DirectorySearcher object is set up. The

New-Object Cmdlet is used to create a new System.DirectoryServices.
DirectorySearcher object. Now that you have a DirectorySearcher

object, you can configure its various properties. The first is SearchRoot,

which defines the DirectoryEntry where the DirectorySearcher will

begin its search. In this case, you want to search the entire directory.

DropBooksDropBooks

277 Chapter 20: Reaching Out to Active Directory

The next part is Filter. If you don’t understand this part yet, don’t worry — I

explain it in the next section. In short, Filter looks for any object that has an

objectClass of user and some value for both the givenName (first name)

and sn (last name) attributes.

Finally, you set SearchScope to “Subtree”, which means that you want

to search SearchRoot and any children it has (basically, perform a

recursive search).

Now that DirectorySearcher is set up, you use the FindAll method to

execute the search. All that’s left is to loop through the results and get the

display name.

 The items returned by the search aren’t DirectoryEntry objects. To actually

get to them, you have to use the GetDirectoryEntry method.

If you have a lot of users in your domain, you may notice that not all the

users are returned. For safety reasons, Microsoft defines a maximum result-

set of 1,000 entries. This limit protects very large directories from errant que-

ries that try to retrieve more values than expected (such as a faulty search

filter that returns 100,000 results when you expected it to return only 5).

 To get around the AD query limitation, you have to page the results, which

means that you retrieve the results in chunks defined by the page size. This

number should be no more than the maximum allowed by AD. This code snip-

pet configures PageSize as 1,000, which means that the query should try to

retrieve no more than 1,000 results at a time:

$search.PageSize = 1000

Creating your LDAP filter
LDAP filters are very powerful because they give you the ability to define

exactly what you’re looking for when querying AD. The downside is that the

syntax takes a little getting used to, so I’m going to take a moment to show

you how to create your own LDAP filters.

Defining a simple filter
A simple filter consists of a condition you’re checking to see whether a given

attribute matches a specific value and is in this format:

(attribute=value)

DropBooksDropBooks

278 Part V: Real-World Windows Administration Using PowerShell

 The attribute name is case sensitive, so if you’re trying to see whether the

username (samaccountname) equals a specific username, you have to write

out the attribute name in the same way that it appears in Active Directory, as

in this example:

(sAMAccountName=sseguis)

I’m not using mixed case to make the code easier to read or because my Shift

key has gone nuts. If you go into the Active Directory schema, you’ll find this

attribute defined exactly this way.

Using wildcards
Often, you want to match a specific pattern rather than a specific value. You

can do this by using wildcards. The wildcard character, which is the asterisk

character (*), can be used to match any pattern. If you use the asterisk by

itself, it means to match any object that has a value for that attribute, such as

any object in which the e-mail address isn’t blank:

(mail=*)

Here’s how you can match any object with a common name (cn) that starts

with s:

(cn=s*)

You can also put the wildcard character at the beginning to find matches in

which samaccountname ends in svc, like this:

(sAMAccountName=*svc)

You can even use the wildcard in the middle. Here’s how you can look for any

object with a display name that starts and ends with s:

(displayName=s*s)

Finally, if you’re feeling a bit adventurous, you can sprinkle your wildcards

anywhere. Here’s a general wildcard search that finds objects in which the

mail attribute contains a dot (.) and an @ symbol, but the dot has to come

before the @ symbol:

(mail=*.*@*)

Negating the filter
Plenty of times, you want to find something that doesn’t match a certain

condition. You may have a naming convention requiring the usernames of all

service accounts to end in srvc, for example. To exclude those usernames

from a query, you have to create a filter that matches objects in which the

DropBooksDropBooks

279 Chapter 20: Reaching Out to Active Directory

samaccountname ends in srvc and then negates it. You negate a statement

by using the exclamation point (!), as in this example:

(!(sAMAccountName=*srvc))

 The negation happens outside the filter, so you define the matching filter,

enclose it in parentheses, put an exclamation point in front of it, and

then enclose the entire thing in parentheses.

Combining filter terms
In the real world, LDAP filters usually consist of multiple conditions, such as

making sure that the objectClass is user and that the mail attribute has a

value. You can use the Boolean and and or conditions when combining vari-

ous filter terms. The symbol used for the Boolean and is the ampersand (&),

whereas the symbol for the Boolean or is the pipe symbol (|).

Here’s how you put together a filter that checks to see whether the object-
Class is user and the mail attribute starts with the letter a:

(&(objectClass=user)(mail=a*))

Notice that all you have to do is define the two filter terms you want and then

combine them by using the ampersand. What’s interesting is that the amper-

sand isn’t placed between the two terms, as you might expect, but at the very

beginning, and then the entire combined filter is enclosed in parentheses.

You must put the operator in front of the terms being combined. Using the

Boolean or works in a similar fashion. Here, you’re interested in users whose

first name (givenName) starts with either a or s:

(|(givenName=a*)(givenName=s*))

That’s easy enough, isn’t it? Now, what if you have more than two terms to

combine? All you have to do is add the extra terms. This code adds the con-

dition that the last name (sn) start with s:

(&(objectClass=user)(mail=a*)(sn=s*))

You can even mix and match and, or, and even the negation operator. This

code’s going to look a little bit confusing, but bear with me for a second:

(|(&(objectClass=user)(!(mail=a*)))(&(objectClass=person)(sAMAccountName=a*)))

I know that it looks like I’m just trying to confuse you, but this code isn’t very

difficult to understand when you break it down. The important part is pairing

the opening and closing parentheses so that you understand which terms are

evaluated in relation to the others. The first thing you notice is that the first

operator you encounter is the Boolean or. This means that you’re checking

DropBooksDropBooks

280 Part V: Real-World Windows Administration Using PowerShell

for a condition that can match either of two terms. If you look closely at the

matching parentheses, you find that the code is performing an or operation

on these two terms:

(&(objectClass=user)(!(mail=a*)))
(&(objectClass=person)(sAMAccountName=a*))

Ah, okay, that’s not too bad. The first term uses the Boolean and to make

sure that both conditions are true. The first statement is simple, as it just

makes sure that the objectClass is user. The second statement checks to

see whether the mail attribute starts with a, but because it’s enclosed with

the negation operator, this entire statement means that the objectClass

must be user and that the mail attribute must not start with a.

The second term is a simple Boolean and that makes sure that the object-
Class is person and that the username starts with a.

The most important thing to get out of this example is that you shouldn’t

allow yourself to be daunted by long filter terms; you just need to break

them into manageable chunks to figure them out. Likewise, if you’re trying to

create a very complex filter, it’s best to break it into manageable filter terms

and then combine those terms into the long, scary one that even you can

barely make sense of.

 If this stuff really interests you, and you want to get more details, you can read

up on Request for Comment (RFC) 4515 (http://tools.ietf.org/html/
rfc4515) and RFC 3687 (http://tools.ietf.org/html/rfc3687).

Looking up userAccountControl properties
One critical attribute for a user account is the userAccountControl attri-

bute. This attribute is critical because it defines the kind of account the

object is, along with any security restrictions and exclusions it has, such as

whether the account is disabled or locked. Unlike simple attributes such as

givenName, sn, and sAMAccountName, the userAccountControl attribute

is actually a group of bits, with each bit representing a particular flag (true =

1 or false = 0, for example). A flag is the term given to a value that indicates

whether something is set (value of 1) or not (value of 0). Table 20-1 contains

a list of possible flags that you can set for this attribute.

Table 20-1 UserAccountControl Attribute Property Flags
Property Flag Value

SCRIPT 1

ACCOUNTDISABLE 2

HOMEDIR_REQUIRED 8

DropBooksDropBooks

281 Chapter 20: Reaching Out to Active Directory

Property Flag Value

LOCKOUT 16

PASSWD_NOTREQD 32

PASSWD_CANT_CHANGE 64

ENCRYPTED_TEXT_PWD_ALLOWED 128

TEMP_DUPLICATE_ACCOUNT 256

NORMAL_ACCOUNT 512

INTERDOMAIN_TRUST_ACCOUNT 2048

WORKSTATION_TRUST_ACCOUNT 4096

SERVER_TRUST_ACCOUNT 8192

DONT_EXPIRE_PASSWORD 65536

MNS_LOGON_ACCOUNT 131072

SMARTCARD_REQUIRED 262144

TRUSTED_FOR_DELEGATION 524288

NOT_DELEGATED 1048576

USE_DES_KEY_ONLY 2097152

PASSWORD_EXPIRED 8388608

TRUSTED_TO_AUTH_FOR_DELEGATION 16777216

In practice, here’s how all this works. If you look at the UserAccountControl

attribute for most user accounts, the value is simply 512, which means that

it’s a regular account. If the account is disabled, this value is 514, because

it’s a normal account (512) that also has the ACCOUNTDISABLE flag (2) set,

so you add the values to get the new value of 514. Based on this table, it’s

easy to reach the conclusion that if a user account is locked, the value would

be 528 (NORMAL_ACCOUNT + LOCKOUT), so you’d write an LDAP filter that

looks something like this:

(&(objectClass=user)(userAccountControl=528))

This code works for this scenario, but the problem is that things always that

simple. If other property flags are set, such as SMARTCARD_REQUIRED, this value

could be 528 + 262144, or 262672. Given that a whole range of values may add

up to a match, what you’re really interested in is whether bit number 5 (value

16) is set. You do this by performing a bitwise AND on the value of user
AccountControl with the value you’re interested in, such as 16. The

resulting value will be true if it’s set; otherwise, the result will be false.

This code sounds a whole lot more confusing than it really is, so I’m going to

jump right to an example of a filter string that looks for locked-out accounts:

DropBooksDropBooks

282 Part V: Real-World Windows Administration Using PowerShell

(&(objectClass=user)(userAccountControl:1.2.840.113556.1.4.803:=16))

The interesting part is this:

(userAccountControl:1.2.840.113556.1.4.803:=16)

This peculiar-looking value, 1.2.840.113556.1.4.803, is the LDAP ver-

sion of the bitwise AND. What this entire string is saying is that you want to

perform a bitwise AND operation on the value of userAccountControl with

the value 16 (LOCKOUT). This code returns true if — and only if — this value

is set. Now if you want to find all the disabled accounts, you can just replace

16 with 2 (ACCOUNTDISABLE), and the code will work.

 The bitwise AND compares two values in binary. Only if the bits are both set

to 1 does the result equal 1. The reason that this operator can check to see

whether a certain flag is set is that if you bitwise AND two numbers and the

resulting value is nonzero, a match definitely occurs in at least one of the bits

of the two numbers. To understand this situation a bit better, consider the

userAccountControl value of 528. You know that the LOCKOUT flag value

is 16 (refer to Table 20-1, earlier in this section). You want to check whether

the LOCKOUT flag is set in that userAccountControl value. To do this, you

perform a bitwise AND of the two values, which looks like this:

1000010000 (528 in binary)
0000010000 (16 in binary)

0000010000 (result)

You simply line up the binary values, and whenever you see that both values

are 1, you put 1 in the result. Because the result contains 1 somewhere, the

code found a match for that LOCKOUT flag, so the account must be locked.

Dynamically obtaining a
user’s distinguishedName
Although it’s very convenient to refer to users by using usernames or

other attributes in their AD user accounts, when you interact with AD by

using ADSI’s LDAP provider, you often have to refer to the user object by its

distinguishedName (DN) rather than its username. This process can be

quite cumbersome, because depending on how you’ve organized your AD,

user objects may move from one container to another, thereby changing

their DN. You may have a script that uses a particular user account and can

hard-code the DN for that object, but if the DN ever changes, your script will break.

DropBooksDropBooks

283 Chapter 20: Reaching Out to Active Directory

It’s far better to generate the DN dynamically based on an AD search for a par-

ticular attribute, such as the logon name (sAMAccountName). Here’s a very

simple function that you can reuse in all your scripts to do just that:

function GetUserDN([string]$username) {

 $objADSI = [adsi]””
 $domain = $objADSI.distinguishedname
 $objDomain = [adsi](“LDAP://” + $domain)

 $search = New-Object System.DirectoryServices.DirectorySearcher
 $search.SearchRoot = $objDomain
 $search.Filter = “(sAMAccountName=$username)”
 $search.SearchScope = “Subtree”

 $result = $search.FindOne()
 if ($result -eq $null) {
 return $null
 } else {
 return $result.GetDirectoryEntry().distinguishedName
 }
}

This function returns the DN for the given username or $null if it can’t find

the DN. If you put this function in your script, you can use it like this:

$username = “administrator”
$userDN = GetUserDN($username)
if ($userDN -eq $null) {
 Write-Host (“Unable to find “ + $username)
} else {
 Write-Host ($username + “ - “ + $userDN)
}

 You can modify the GetUserDN function to accommodate other objects —

such as computers, groups, and contacts — simply by changing the

DirectorySearcher filter criteria and adjusting your function parameters

accordingly.

Modifying Object Attributes
Modifying object attributes in Active Directory by using Windows PowerShell

is a lot easier than you might think. It consists of three steps:

 1. Get a DirectoryEntry object that represents the object you want to

modify.

DropBooksDropBooks

284 Part V: Real-World Windows Administration Using PowerShell

 2. Use the DirectoryEntry object’s put method to assign the new value.

 3. Commit the changes by using the SetInfo method.

To demonstrate just how straightforward this process really is, here’s a

simple script that modifies a user’s first name, last name, display name, and

description:

$user = [adsi]”LDAP://CN=testuser,ou=test,dc=testlab,dc=local”
$user.put(“givenName”,”Chris”)
$user.put(“sn”,”Laile”)
$user.put(“displayName”,”Laile, Chris”)
$user.put(“description”,”Master of Disaster”)
$user.SetInfo()

Even though I chose to use a user object in the example, this same procedure

works for groups and organization units — in short, for any object in Active

Directory. The put method takes the attribute name as the first parameter

and the value as the second parameter. You can change only attributes that

actually exist for the kind of object you’re changing. If you try to change an

attribute that doesn’t exist, an error will be raised.

 Attribute names themselves aren’t case sensitive, although it’s good practice

to adhere to case-sensitive attribute names so that you get used to them,

because you’ll need those names for things like LDAP filters.

The SetInfo method does the actual work of making the changes in Active

Directory. If you forget this step, you’ll find that none of your changes are

reflected in Active Directory, even though Windows PowerShell doesn’t

complain, because any property changes you make are done in memory in a

cached mode.

 Only when you call the SetInfo method after making changes in an object

are those changes committed to Active Directory.

Updating Group Membership
Although you can handle all attributes by using the put method, the process

isn’t quite that simple when it comes to group membership. In general, when

you do things manually, you have two ways of removing a user from a group:

open the group and remove the user as one of its members, or open the user

and remove the group from the list of member groups. The easiest way to add

a user to a group is to manipulate the group directly by using ADSI, like this:

DropBooksDropBooks

285 Chapter 20: Reaching Out to Active Directory

$user = “cn=testuser,ou=test,dc=testdom,dc=local”
$group = [ADSI]”LDAP://cn=MyGroup,cn=Users,dc=testdom,dc=local”
$group.add(“LDAP://” + $user)
$group.SetInfo()

When adding a user to a group, you have to specify the full DN for the user

object. In practice, knowing the exact DN for the user object you want to add

isn’t very convenient so you’ll want to use something like the GetUserDN

function to dynamically obtain the object’s DN for you.

You can remove a user from a group just as easily as you add a user to

a group. In fact, you use the same code except that you use the remove

method instead of the add method, like this:

$user = “cn=testuser,ou=test,dc=testdom,dc=local”
$group = [ADSI]”LDAP://cn=MyGroup,cn=Users,dc=testdom,dc=local”
$group.remove(“LDAP://” + $user)
$group.SetInfo()

Getting to the Raw ADSI
Object Using psbase

Whenever you connect to AD by using ADSI and LDAP, what you’re really

getting is a .NET-based type adapter that allows you to communicate through

the .NET Framework and with the ADSI provider. The problem used to be

that to access the raw ADSI object lying underneath, you had to go through

the psbase hidden object built into the ADSI type adapter. In other words, in

Windows PowerShell 1.0, you had to do this to get to the children of a given

container:

$ou = [adsi]”LDAP://cn=users,dc=testlab,dc=local”
$ou.psbase.children

In Windows PowerShell 2, if you try to access any of the methods and prop-

erties that fall under this psbase class, you can do so directly without first

having to refer to psbase, which means that this code is perfectly valid:

$ou.children

DropBooksDropBooks

286 Part V: Real-World Windows Administration Using PowerShell

The caveat is that if you run Get-Member on the ADSI type adapter object, it

doesn’t return the full list of supported properties and methods of the under-

lying ADSI object. If that’s the case, how would you know whether an OU has

a property called children? The trick is to run Get-Member on the psbase

object instead. You can see the difference clearly if you run these two

commands:

$ou | get-member
$ou.psbase | get-member

The call to Get-Member on the psbase object reveals all the “hidden” fea-

tures of the raw ADSI object.

DropBooksDropBooks

Chapter 21

PowerShell Lockdown
In This Chapter
▶ Taking advantage of Windows PowerShell security features

▶ Creating a code-signing certificate

▶ Perusing the certificate store

▶ Signing the scripts you create

▶ Using Windows PowerShell to control the Windows Firewall

Security has been a hot topic in recent years, and Windows PowerShell

is just one of the products designed to closely follow Microsoft’s

Trustworthy Computing Initiative. What is security, really? I think a lot of

people have the misconception that you’re either secured or you’re not. The

reality is that security consists of layers that act as hurdles for anyone trying

to get to whatever it is you’re trying to secure.

Now, I don’t claim to be a security expert, but it really just takes a bit of

common sense to understand that nothing is absolutely secure — although

you can take measures to make things more secure. Even though most cars

have door locks, for example, many people still install car alarms and other

theft-deterrent devices. Do they work? Yes! Are they foolproof? No! Locks,

alarms, and other theft-deterrent devices simply make your car less inter-

esting to thieves because they have to work harder to get to the prize. The

whole philosophy behind security is that the cost or effort required to break

the security exceeds any returns a person can get for doing so.

Windows PowerShell is designed with several layers of security that can be

used in concert to ensure that its power can be controlled (ideally, by you).

In this chapter, you get to know the different security measures Windows

PowerShell has in place by default to help prevent unwanted script execution

and how you can adjust these settings to better suit your environment. You’ll

also get to use PowerShell to manipulate the Windows firewall. Keeping your

systems secure while having the ability to leverage something as powerful

as Windows PowerShell can no longer be an afterthought, and knowing how

to take appropriate security measures can go a long way towards protecting

yourself from malicious users.

DropBooksDropBooks

288 Part V: Real-World Windows Administration Using PowerShell

PowerShell Security Features
With all the flak Microsoft has received about security — or, rather, the lack

of security — over the years, it comes as no surprise that anything new that

Microsoft has developed (including Windows PowerShell) has some very

good built-in security features. Mind you, these features aren’t foolproof, but

they stop some very common techniques that people use to exploit unsus-

pecting users.

Getting rid of the current
directory loophole
One trick that hackers use is putting malicious commands and scripts in

regular places, such as your home directory, that have the same names as

commonly used benign commands. If you happen to be in the tainted direc-

tory when you type the command name, you run the malicious script instead.

Windows PowerShell protects you against this lame but unfortunately effec-

tive attack by not including the current directory in the search path when

you enter commands. Instead, if the script is in the current directory, you

have to prefix it with .\ to tell PowerShell explicitly to look in the current

directory, as in this example:

PS C:\scripts>.\myscript.ps1

Stopping the double-click blues
Another method that tricks users into running malicious scripts is getting

them to double-click the malicious file. The file can be an e-mail attachment

or a file that was somehow dropped into the file system somewhere, such as

in the user’s start-up folder. Fortunately, you have some protection against

this tactic as well. Unlike a Windows Shell script or one written in VBScript,

a Windows PowerShell script doesn’t run when you double-click it. Instead,

Windows PowerShell scripts open in Notepad when they’re double-clicked,

because the file extension .ps1 is associated with Notepad.

Protecting through ExecutionPolicy
Another security enhancement is the use of execution policies to define what

kind of scripts are allowed to run and, more specifically, where. Windows

DropBooksDropBooks

289 Chapter 21: PowerShell Lockdown

PowerShell defines four ExecutionPolicy levels, listed in Table 21-1, with

the default policy being the most restrictive.

Table 21-1 Windows PowerShell ExecutionPolicy Levels
Level Description

Restricted This level is the default policy level. The name
is appropriate because you’re not allowed to
run any Windows PowerShell scripts, not even
if all they do is display Hello World. The
only things you can run on a host on which
ExecutionPolicy is set to Restricted
are built-in Windows commands and Cmdlets.
Note: Even your Windows PowerShell profile
script won’t run when ExecutionPolicy
is set to this level unless you sign it. (I discuss
signing scripts in the next section.)

AllSigned This policy allows you to run scripts, but only
if the scripts have been signed with a digital
signature from a trusted publisher. Ideally, in
secure corporate environments, this level is
what you want your setting to be, because it’s
the most secure level that allows scripts to
be run. The only downside is that you have to
sign all your scripts; otherwise, they won’t be
allowed to run.

RemoteSigned If you believe that your system is secure
against someone logging in and launching a
Windows PowerShell window, this level makes
life a bit easier but sacrifices a bit of security.
This level allows any script to run, but only if
it’s launched from a local drive; otherwise, the
script must be signed with a digital certificate
from a trusted publisher.

Unrestricted This policy level is a free-for-all level. When
ExecutionPolicy is set to this level, it
behaves the same way as the regular Windows
command prompt or Windows Scripting Host,
in that absolutely nothing is required to be
signed for the script to run, regardless of loca-
tion. I highly recommend that you don’t set
ExecutionPolicy to this level.

DropBooksDropBooks

290 Part V: Real-World Windows Administration Using PowerShell

 You can set and get the ExecutionPolicy by using the Get-Execution
Policy and Set-ExecutionPolicy Cmdlets. The recommended way, how-

ever, is to download the administrative template from Microsoft (http://
go.microsoft.com/fwlink/?LinkId=102940), which allows you to set

the execution policy centrally through Active Directory by using a Group

Policy Object (GPO). I discussed Active Directory in Chapter 20.

Generating a Code-Signing Certificate
I’ve been talking about the need to sign your scripts with a digital signature,

but what does that mean? You need to have a Class III Microsoft Authentication

code-signing certificate generated by a trusted publisher to sign your scripts.

You can purchase one of these certificates through any number of commercial

Certificate Authorities (CAs) such as thawte, Entrust, and VeriSign, or you can

generate one yourself if you have your own in-house CA.

 You can find out more about Public Key Infrastructure and how to set it up

for yourself in Windows Server 2003 by going to https://www.microsoft.
com/windowsserver2003/technologies/pki/default.mspx.

Creating a self-signed certificate
A self-signed certificate is one that you generate yourself. Anyone can gener-

ate a self-signed certificate, which makes it very easy to use for signing your

scripts, but to be used on another computer, your self-signed certificate must

first be imported on that computer to make it trusted. You use makecert.
exe, which is part of the Windows Platform SDK, to generate a self-signed

certificate.

 You can find more information about makecert.exe by visiting http://
go.microsoft.com/fwlink/?LinkId=108538.

Generating a self-signed certificate is a two-part process:

 1. Create a local trusted certificate authority.

 2. Generate a code-signing certificate from that certificate.

You can generate your own local trusted CA by running

makecert.exe -n “CN=MyLocalCertRoot” -a sha1 -eku 1.3.6.1.5.5.7.3.3 -r -sv root.
pvk root.cer -ss Root -sr LocalMachine

DropBooksDropBooks

291 Chapter 21: PowerShell Lockdown

You’ll be prompted to enter the password to use for the private key and

confirm it (shown in Figure 21-1). Then you’ll have to enter the password

one more time to read the key you just generated and add it to the store (see

Figure 21-2). For more on the certificate store, see “Browsing the Certificate

Store” section later in this chapter.

Figure 21-1:
The Create
Private Key

Password
prompt
during

certificate
generation.

Figure 21-2:
The Enter

Private Key
Password
prompt to

load the
certificate

into the
store.

Two files are created in the directory from which you ran makecert.exe.

These two files are root.pvk (the private-key file) and root.cer (the

certificate/public-key file seen in Figure 21-3). You’re probably wondering

what the -eku 1.3.6.1.5.5.7.3.3 part of the command is for. The -eku

switch specifies enhanced-key-use object IDs (OIDs) for this certificate, and

that unique number is the OID for a code-signing certificate.

Before you can sign one of your scripts, you have to create a personal code-

signing certificate derived from this trusted root certificate. You do that by

using this command:

makecert.exe -pe -n “CN=My PowerShell Cert” -ss MY -a sha1 -eku 1.3.6.1.5.5.7.3.3
-iv root.pvk -ic root.cer

DropBooksDropBooks

292 Part V: Real-World Windows Administration Using PowerShell

Figure 21-3:
The newly

created
trusted root
certificate.

You see that familiar code-signing OID again, along with references to the root

private key and certificate. When you enter the password for the private key,

you generate a new certificate that will be stored in the Personal Certificates

store. Figure 21-4 shows what a personal signing certificate looks like.

Figure 21-4:
Personal

certificate
that can

be used for
signing your

scripts.

DropBooksDropBooks

293 Chapter 21: PowerShell Lockdown

Requesting a certificate
from your Enterprise CA
If you happen to have a Microsoft Enterprise CA in place in your environ-

ment, generating a code signing certificate is a much easier process. First,

you must make sure that users who want to generate their own code-signing

certificate have the necessary permissions on the Code Signing certificate

template. Assuming that everything is in place and ready to go, then you

must follow these steps:

 1. As the user, open the certificate’s Microsoft Management Console

(MMC) snap-in.

 2. Right-click on Personal and select Certificates.

 3. Choose All Tasks➪Request New Certificate.

 4. Select the Code Signing template and then click the Enroll button

(see Figure 21-5).

 Your certificate is generated by the server and automatically imported

into your Personal Certificates store. Figure 21-6 shows what this

certificate will look like.

Figure 21-5:
Requesting

a code-
signing

certificate
from an

enterprise
CA.

DropBooksDropBooks

294 Part V: Real-World Windows Administration Using PowerShell

Figure 21-6:
The

Personal
Certificate

from an
enterprise

CA that you
can use to

sign your
scripts.

As you can see by comparing Figure 21-4 and Figure 21-6, there’s no func-

tional difference between these two certificates. The one issued by the

enterprise CA has the advantage, however, because it’s derived from the

certificate of the trusted root certificate issuer within your organization.

This means that if you sign your script with this certificate, the script will be

trusted by other hosts in your domain.

Using a certificate from a commercial, third-party trusted CA can come in

useful because these certificates usually are trusted by other organizations

as well. You can easily sign a script with your commercial certificate and

send it off to a different organization, and the script should run there as well.

Browsing the Certificate Store
In keeping with Windows PowerShell’s virtual drive paradigm, the certifi-
cate store itself is treated as a virtual PowerShell drive. You access it by

going to the CERT: drive. The two main braches are CurrentUser and

LocalMachine. The CurrentUser branch contains the certificates attached

to the current user credential, and the LocalMachine branch contains cer-

tificates stored for the entire computer.

Whether you used the self-signing method or requested a certificate from

your CA to generate your code-signing certificate, you should now have a

certificate in your personal certificate store. This is how you query your per-

sonal certificate store for any installed code-signing certificates:

DropBooksDropBooks

295 Chapter 21: PowerShell Lockdown

Get-ChildItem cert:\CurrentUser\My -codesigning

Normally, you have only one certificate in your store based on what you used

to generate your certificate, but it’s entirely possible to have more than one

code-signing certificate. I have two certificates on my computer, for example.

I created one by using makecert.exe and generated the other one by send-

ing a request to my enterprise CA.

Signing Your Scripts
Before you can sign your scripts with these certificates, you have to be able

to get a reference to your certificate from within Windows PowerShell. If you

have only one certificate, you do this by running

(Get-ChildItem cert:\CurrentUser\My -codesigning)[0]

This code assumes that you have only one certificate for code signing, so it

may not work as you expect if you have more than one certificate. This little

piece of code grabs the first certificate in the list, but that certificate may not

be the one you want to use to sign your scripts. If you have more than one

certificate, a much better method is to explicitly select the certificate you

want to use for signing.

Each certificate has a Subject attribute. You can use this attribute to select

which certificate you want to use by passing your personal certificate store

through the Where-Object Cmdlet and explicitly naming the subject of the

certificate you want to use. In this example, I’m explicitly choosing the cer-

tificate that has the subject “CN=My PowerShell Cert” (which, you may

recall, is the name of the certificate I use to create a certificate with make
cert.exe in “Creating a self-signed certificate,” earlier in this chapter):

Get-ChildItem cert:\CurrentUser\My -codesigning | Where-Object {$_.Subject -eq
“CN=My PowerShell Cert”}

I know it seems that I’ve taken a really long road to get to this point, but the

fact is that signing your script is easy as long as you have a certificate ready to

go. The most complicated part of the process is obtaining a certificate to use.

You sign scripts by using the Set-AuthenticationSignature Cmdlet.

This Cmdlet takes two parameters: the name of the script and the certificate

to use to sign it. You’d run this command to sign a script called signme.ps1,

using the certificate with the subject “CN=My PowerShell Cert”:

DropBooksDropBooks

296 Part V: Real-World Windows Administration Using PowerShell

Set-AuthenticationSignature c:\scripts\signme.ps1 (Get-ChildItem cert:\
CurrentUser\My -codesigning | Where-Object {$_.Subject -eq “CN=My
PowerShell Cert”})

If you open your signed script, you find that it now contains an additional

commented section at the very end, with this section containing the signa-

ture block. Here’s how the signme.ps1 script looks after you sign it with

your certificate:

Write-Host “My Sign Me Script”

SIG # Begin signature block
MIIEAAYJKoZIhvcNAQcCoIID8TCCA+0CAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB
gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR
AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQUe9+1h6HWnhddsp/7T49CVbF0
7q6gggIcMIICGDCCAYWgAwIBAgIQfgk+sX3GA5JNBIJCH9VmQzAJBgUrDgMCHQUA
MBoxGDAWBgNVBAMTD015TG9jYWxDZXJ0Um9vdDAeFw0wODA3MjgwMjUxMjFaFw0z
OTEyMzEyMzU5NTlaMB0xGzAZBgNVBAMTEk15IFBvd2VyU2hlbGwgQ2VydDCBnzAN
BgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAlxE3HmkLuygF4a1HxAYME6dgWzxJb2h/
LEuv+rcwMSDW6t733yNir7rK8VRpBE7RKXPYdkF/dG1/5ydkO5lOFLbkLti62GD2
7qEmK+OvB9iLr/isr1B1JF/0u6K+YzMr2YSbTHoKLhqBn+Klayqx3emQsfiiWWuf
Bk6bNy0+flkCAwEAAaNkMGIwEwYDVR0lBAwwCgYIKwYBBQUHAwMwSwYDVR0BBEQw
QoAQqC2qP6VoJ5ygfxxoNmooR6EcMBoxGDAWBgNVBAMTD015TG9jYWxDZXJ0Um9v
dIIQ1XXwiiRdJIhBW39Hw2Q8/jAJBgUrDgMCHQUAA4GBAENHlnQjNE4ojzG1vWkB
AnZ7S4OFMgYjVyQ9rD9WAL566sFoy+OaQUGjR3Q51rRxrfw16u9K6vFw3QoGfJBN
KuLYF9NnUYZNyX0CjyVS106lPC8liHUZwOoEDmIWzPPrkkIzNjBLX64csW0FNicA
ahl4n6zcFaSGliiE0/OOaMy5MYIBTjCCAUoCAQEwLjAaMRgwFgYDVQQDEw9NeUxv
Y2FsQ2VydFJvb3QCEH4JPrF9xgOSTQSCQh/VZkMwCQYFKw4DAhoFAKB4MBgGCisG
AQQBgjcCAQwxCjAIoAKAAKECgAAwGQYJKoZIhvcNAQkDMQwGCisGAQQBgjcCAQQw
HAYKKwYBBAGCNwIBCzEOMAwGCisGAQQBgjcCARUwIwYJKoZIhvcNAQkEMRYEFFJm
Ut/wSfvkIWJUof2VfpXfE1zMMA0GCSqGSIb3DQEBAQUABIGAHsHfqq3HWq51uKob
b0CNkAoH4irbN4mA8ukoYXE93e0SiOPee93wS8pojUQh/5eEKBYBNYPRQXBhvz4M
8/5KNRfVcH/IffpMCr/7Z5guajYelj9NOGAquM7Ls7K/dyCJwXRBJbbrl9cC/Nj2
iv05yfrioKcqxdHT3AP5RIdcF7A=
SIG # End signature block

If you try to modify this script, Windows Powershell reads this as an invalid

signature, and the script won’t be allowed to run.

 If you want to save yourself from having to type these commands each and

every time you sign your scripts, you can create a function to automate this

process for you and stick this function in your profile script for use any time.

Here’s an example:

function SignScript([string]$script)
{
 Set-AuthenticationSignature $script Get-ChildItem cert:\CurrentUser\My

-codesigning | Where-Object {$_.Subject -eq “CN=My PowerShell
Cert”}

}

DropBooksDropBooks

297 Chapter 21: PowerShell Lockdown

Now if you want to sign the signme.ps1 script again, you just need to run

SignScript “c:\scripts\signme.ps1”

Managing the Windows Firewall
One of the best ways to protect your operating system is to put it behind a

firewall. Ideally, the operating system should sit behind dedicated hardware

firewalls, but even a software-based firewall such as the built-in Windows

Firewall is an added level of security that can help you keep your system

protected. Before I go on, I’m going to make the assumption that you already

know what the Windows Firewall is and how it works.

You can manage the Windows Firewall through the HNetCfg.FwMgr

Component Object Model (COM) object. The most basic setting is whether

the firewall is enabled in the first place. You can easily determine this status

by running this bit of code:

$objFW = New-Object -com hnetcfg.fwmgr
$objFW.LocalPolicy.CurrentProfile.FirewallEnabled

If the firewall is turned off (in which case the value of FirewallEnabled will

be false), you can turn it on by entering this code:

$objFW.LocalPolicy.CurrentProfile.FirewallEnabled = $true

 Although you can enable the firewall by using this method, Windows won’t let

you turn it off by using the COM interface, which is probably a good thing.

Otherwise, it would be a really easy way for malicious code that someone was

able to run on your computer to shut off the firewall.

The firewall’s current profile is the key to reading and configuring all the

firewall settings. The two other general settings that you may want to con-

figure are whether exceptions are allowed and whether you want to be

notified whenever the firewall blocks a new program. To configure these

settings, you set the CurrentProfile’s ExceptionNotAllowed and

NotificationsDisabled properties, respectively. The default value for

both of these properties is false, which means that exceptions are allowed

and notifications are enabled.

One of the most common changes people make is to allow ping requests

(inbound Internet Control Message Protocol [ICMP] echo requests) to go

through. This capability isn’t allowed by default, but people like the capabil-

ity to determine whether a host is up. To enable this capability, you have to

configure it through the IcmpSettings of the current profile, like this:

DropBooksDropBooks

298 Part V: Real-World Windows Administration Using PowerShell

$objFW.LocalPolicy.CurrentProfile.IcmpSettings.AllowInboundEchoRequests = $true

 In general, it’s fine to enable this setting when the host is on your internal net-

work. If the host is exposed directly to the Internet, disabling ICMP echo

requests is good practice; when you do, malicious users on the Internet can’t

easily detect that your host is online.

Another popular option is enabling remote administration of the firewall by

setting the Enable property of the RemoteAdminSettings property to

true, like this:

$objFW.LocalPolicy.CurrentProfile.RemoteAdminSettings.Enabled = $true

The three collections in the CurrentProfile of significant interest are

GloballyOpenPorts, Services, and AuthorizedApplications. If

exceptions are allowed, the rules defined in any of these three collections

ultimately determine whether a certain connection is allowed.

Defining globally open ports
Depending on what you’ve installed on your computer, you may have some

globally open ports already defined. In simple terms, globally open ports

define what ports are globally allowed to be used on your system for commu-

nicating with other hosts. You can list them all by getting the contents of the

GloballyOpenPorts property of the current profile with this code:

$objFW.LocalPolicy.CurrentProfile.GloballyOpenPorts

You can create your new GloballyOpenPorts rules by creating a

HNetCfg.FWOpenPort object, setting its various properties, and then

adding it to the GloballyOpenPorts collection. Here’s a code snippet that

lets you add a rule to open port 8080 for Transmission Control Protocol

(TCP) traffic:

$objFW = New-Object -com hnetcfg.fwmgr
$portRule = New-Object -com hnetcfg.fwopenport
$portRule.Name = “MyHTTP”
$portRule.Protocol = 6
$portRule.Port = 8080
$portRule.Enabled = $true
$objFW.LocalPolicy.CurrentProfile.GloballyOpenPorts.Add($portRule)

As you can see, this code is really straightforward. The only property that needs

explanation is the Protocol property, which defines whether the rule is for

TCP or UDP. To configure this rule for TCP, set this value to 6; to configure

this rule for UDP, set this value to 16.

DropBooksDropBooks

299 Chapter 21: PowerShell Lockdown

Listing firewall services
Windows also has a set of defined services it can provide, such as file and

Printer Sharing, Network Discovery, and Remote Desktop, that are all blocked

by the firewall by default. These services are associated with one or more

GloballyOpenPorts rules. You can get a list of all these services and their

associated ports by running this bit of code.

$objFW = New-Object -com hnetcfg.fwmgr
foreach($service in $objFW.LocalPolicy.CurrentProfile.Services) {
 Write-Host (“Service Name: “ + $service.Name)
 Write-Host (“Service Type: “ + $service.Type)
 Write-Host (“Service Customized: “ + $service.Customized)
 Write-Host (“Service IP Version: “ + $service.IpVersion)
 Write-Host (“Service Remote Addresses: “ + $service.RemoteAddresses)
 Write-Host (“Service Enabled: “ + $service.Enabled)
 foreach($port in $service.GloballyOpenPorts) {
 Write-Host (“`tPort Name: “ + $port.Name)
 Write-Host (“`tPort number: “ + $port.Port)
 Write-Host (“`tPort Protocol: “ + $port.Protocol)
 Write-Host (“`tPort Enabled: “ + $port.Enabled)
 }
 Write-Host “`n”
}

When you enable one of these services, the associated GloballyOpenPorts

rules also become enabled. This makes your life easier since enabling compli-

cated services like File and Print Services only requires enabling one service

and you don’t have to worry about knowing which ports you have to open —

they’re all defined in the GloballyOpenPorts property of the service and

are automatically taken care of for you. Here’s a simple bit of code you can

use to enable File and Printer Sharing through the Windows firewall:

$objFW = New-Object -com hnetcfg.fwmgr
$service = $objFW.LocalPolicy.CurrentProfile.Services | Where-Object {$_.Name

-eq “File and Printer Sharing”}
$service.Enabled = $true

Now, if you rerun the little script to list the services defined in the firewall,

you’ll see that File and Printer Sharing along with all associated port policies

have been enabled.

Allowing applications to get through
Application firewall policies are really easy ways you can allow applications

to work through the firewall without having to know every port the applica-

tion uses. Rather than defining rules based on ports, you simply provide the

DropBooksDropBooks

300 Part V: Real-World Windows Administration Using PowerShell

name of the application’s executable name and where it’s allowed to talk to

and you’re all set — the Windows firewall is intelligent enough to take care

of the rest. There aren’t any applications allowed by default, but if you’ve

allowed applications to go through, you can find out what they are by query-

ing the AuthorizedApplications property of the current profile.

$objFW = New-Object -com hnetcfg.fwmgr
$objFW.LocalPolicy.CurrentProfile.AuthorizedApplications

You can create new application policies by creating a new HNetCfg.
FwAuthorizedApplication COM object, populating the vari-

ous properties that define the application, and then adding it to the

AuthorizedApplications collection for the profile. Here’s an example for

allowing ftp.exe to go through the firewall:

$objFW = New-Object -com hnetcfg.fwmgr
$objApp = New-Object -com hnetcfg.fwauthorizedapplication
$objApp.Name = “FTP Command Line”
$objApp.ProcessImageFileName = “C:\windows\system32\ftp.exe”
$objApp.RemoteAddresses = “*”
$objApp.Enabled = $true
$objFW.LocalPolicy.CurrentProfile.AuthorizedApplications.Add($objApp)

DropBooksDropBooks

Chapter 22

Converting Your Old Scripts: Out
with the Old, In with the New

In This Chapter
▶ Breathing new life into your Windows Shell Scripts

▶ Moving your WSH scripts to Windows PowerShell

▶ Interacting with COM

▶ Getting your feet wet in ADO.NET

If you’ve been in the business of Windows administration for any amount

of time, you probably already have a collection of scripts that you use to

make your life easier. More than likely, these scripts are written in Windows

Shell Scripting (also known as batch files) or in VBScript or JScript for Windows

Scripting Host (WSH). Most of the time, it makes the most sense to continue

using those scripts in their current form and to use Windows PowerShell for

any new scripts you create.

Although that system is the path of least resistance, when it comes to

understanding a new scripting language, nothing is better than revisiting old

scripts and converting them to the new language. For starters, it gives you

the opportunity to go over your old code to see where you can improve. I’ve

done this a couple of times, only to find myself chuckling over rookie mis-

takes and, in some cases, finding dramatic changes that increase the script’s

performance and reliability. The other benefit is that you already know the

logic of the old script, so the exercise of converting it to Windows PowerShell

is purely that of understanding how to do the same thing in a new language.

In this chapter, you explore techniques for migrating your existing Windows

Shell or Windows Scripting Host scripts to Windows PowerShell. Although

I can’t promise that converting your scripts to Powershell will make those

scripts run faster, I can confidently say that it won’t get any more compli-

cated. In fact, in many cases, you’ll find that it’s much easier to accomplish

the same things in PowerShell.

DropBooksDropBooks

302 Part V: Real-World Windows Administration Using PowerShell

Converting a Windows Shell Script
to Windows PowerShell

I usually get laughed at whenever I use the term Windows Shell Script in talk-

ing about batch files in Windows 2000 and later, but the difference is impor-

tant. Batch files are designed to run a series of commands in sequence with

very limited (almost nonexistent) logic statements to control how things run.

In Windows 2000 and later, a lot more keywords and constructs were added

to the Windows command shell, making it possible to do things like construct

for loops and use if/else statements to run more than a single command if

a particular condition is met.

Windows Shell Scripting is a fairly weak scripting language, but its biggest

advantage is that it’s supported out of the box in every Windows operating

system without your having to install anything. You can overcome its limi-

tations by taking advantage of powerful command line utilities. Converting

these scripts to Windows PowerShell is as simple as it gets, because there

are only a few things you can do in Windows Shell Scripting that you’ll have

to translate to Windows PowerShell.

Echoing to the screen
The ability to display something onscreen for the user to read is the most

basic form of user feedback. You do this by using the Echo command, which

has existed forever. You accomplish the same task in Windows PowerShell by

using the Write-Host Cmdlet, so these two commands are equivalent:

Echo Hello World
Write-Host “Hello World”

The Echo command is so widely used that in Windows PowerShell, Echo is

the alias for Write-Host, so you can continue to use Echo if you’re really

stubborn.

 Many of the aliases that link back to old commands were created by the

Windows PowerShell developers to help with the transition to Windows

PowerShell. Although these aliases are convenient, and the likelihood that

they’ll go away is very slim, you probably shouldn’t rely on them. Instead, use

the real Cmdlet names when converting your scripts. Hey, those names even

look fancier, so this practice may have the side effect of making you look

smarter to the uninitiated!

DropBooksDropBooks

303 Chapter 22: Converting Your Old Scripts: Out with the Old, In with the New

Using conditional statements
The most basic way to branch out into different parts of your Windows Shell

Script is to use if/else clauses. The two most common uses for if/else

clauses are to compare values and to check whether a file or folder exists.

The first use is simple; it’s just a check to see whether two values are the

same (or, in the case of numbers, whether one value is greater or less than

the other). This check often looks like this:

set a=test
if %a%==test Echo The value is test!

You can also throw in an else statement, like this:

set a=2
if %a% EQU 2 (
 Echo The value is two!
) else (
 Echo The value is not two!
)

Both of these examples compare whether two values are equal. The dif-

ference between the double equal sign in the first example and EQU in the

second example is that the double equal sign is used to compare strings,

whereas EQU is used to compare numbers.

Converting this to Windows PowerShell is just child’s play:

$a = 2
if ($a -eq 2)
{
 Write-Host “The value is two!”
}
else
{
 Write-Host “The value is not two!”
}

Windows Shell Scripting also has the ability to compare one number with

another by using a few different operators. Table 22-1 shows you how these

operators map to the equivalent PowerShell operators.

DropBooksDropBooks

304 Part V: Real-World Windows Administration Using PowerShell

Table 22-1 Value Comparison Operators
Windows Shell
Scripting

Windows PowerShell Meaning

EQU -eq Equal

NEQ -ne Not equal

LSS -lt Less than

LEQ -le Less than or equal

GTR -gt Greater than

GEQ -ge Greater than or equal

Migrating that FOR command
One of the tricks in Windows Shell Scripting is to use the FOR command to

take the contents of a file or the output of a command and then do some-

thing with it. Because you’d use the Windows Shell Script FOR command in

many scenarios, I’m going to address each scenario and show you how to do

exactly the same thing in Windows PowerShell.

Performing some action for each line in a text file
This scenario is by far the most common reason to use the FOR command.

Suppose that you have a text file containing a bunch of computer names,

one on each line, and want to perform some action on them (such as pinging

those computer names). Here’s a quick example of a Windows Shell Script

that pings each computer listed in a text file called computers.txt located

in the current directory and, if the computer responds, copies a file called

processed.txt to the top of the C: drive:

FOR /F %%i in (computers.txt) do call :dosomething %%i
goto :EOF

:dosomething
set compname=%1
ping %compname% | find “Reply” > NUL
IF %ERRORLEVEL% NEQ 0 goto :EOF
copy processed.txt \\%compname%\c$
goto :EOF

Here’s how you accomplish the same thing by using Windows PowerShell:

$data = Get-Content computers.txt
foreach($line in $data)
{

DropBooksDropBooks

305 Chapter 22: Converting Your Old Scripts: Out with the Old, In with the New

 $pingresult = Get-WmiObject -query “select * from win32_pingstatus where
address=’$line’”

 if ($pingresult.StatusCode -eq 0)
 {
 Copy-Item processed.txt \\$line\c$
 }
}

The main difference is that the foreach command in Windows PowerShell

can’t read directly from a file, so you have to use the Get-Content Cmdlet

to read the contents of the file. Then you use a foreach loop to loop

through the contents, because the return value of Get-Content is an array

of objects, with each object representing a line in the file. To ping the host,

you use the Get-WmiObject Cmdlet to query the Win32_PingStatus WMI

class. If the StatusCode property of the resulting object is 0, the hostname

you supplied was pinged successfully, so you can go ahead and copy the file

to that computer.

 Another method of pinging a host involves using the System.Net.
NetworkInformation.Ping .NET class. The only difference is that if the

.NET class can’t ping the host because it can’t resolve the name to an IP, it

throws an exception (error), which you have to handle.

Using a FOR loop to split text
Another popular use of the FOR loop in Windows Shell Scripting is tokenizing

a string. Tokenizing means that you want to split some text by using a delim-

iter to mark where the string should be split. You may have a text file that

contains some information such as username, last name, and first name in

comma-separated values (CSV) format, and you want to extract the last name

and first name from each line and combine them to form a full name. Here’s

what the input file may look like:

sseguis,Seguis,Steve
bstewart,Stewart,Bryan
bfranklin,Franklin,Bob

The Windows Shell Script to extract the last name and first name (second

and third columns) of this file and put them together looks like this:

for /f “Tokens=2,3 delims=,” %%i in (users.txt) do call :makedisplayname %%i %%j
goto :EOF

:makedisplayname
set lastname=%1
set firstname=%2
echo %firstname% %lastname%
goto :EOF

DropBooksDropBooks

306 Part V: Real-World Windows Administration Using PowerShell

You actually have two ways to solve this problem in Windows PowerShell.

The long way is to use Get-Content to grab the contents of the file, run it

through a foreach loop, and then use the string’s split method to chop

the string into its parts. The preferred method is to use the Import-CSV

Cmdlet, as it encapsulates what you’re trying to achieve:

$header = “username”,”lastname”,”firstname”
$contents = Import-CSV users.txt –header $header
foreach($user in $contents)
{
 Write-Host $user.firstname $user.lastname
}

Notice how much more straightforward that code looks. Import-CSV

assumes that the first line in the file contains the header information (names

of each of the columns), so if you don’t have a header, as is the case here,

you have to supply the header information yourself by using the -header

parameter. The best part is that each line of the file is automatically parsed

and converted to an object, with each row being assigned its appropriate

header name, so it’s easy to refer to the firstname and lastname fields as

needed.

 That entire PowerShell code snippet can be replaced by a single line of

Windows PowerShell code, if you really want to impress:

Import-CSV users.txt –header “username”,”lastname”,”firstname” | Select-Object
“lastname”,”firstname” | ForEach-Object {Write-Host $_.firstname
$_.lastname}

Although Import-CSV is designed to parse files that are comma delimited,

one of the enhancements of this Cmdlet in Windows PowerShell 2 supports a

-Delimiter parameter, allowing you to specify what the delimiter in the file

should be. This is how you’d import a users.txt file that’s delimited by the

pipe character (|) rather than a command:

Import-CSV users.txt –header $header –delimiter |

Converting a Windows Scripting Host
Script to Windows PowerShell

Windows Scripting Host (WSH) has been around for several generations of

Windows now, and has been installed and included by default since Windows

2000. As a result, it has become the most popular platform to script on for

work with any of the Windows operating systems. You may have downloaded

WSH scripts or written a few from scratch yourself. I’m fairly certain that no

Windows shops out there are without some kind of WSH script.

DropBooksDropBooks

307 Chapter 22: Converting Your Old Scripts: Out with the Old, In with the New

WSH scripts are usually written either in VBScript or JScript. Whether you

use one or the other is purely preference. Personally, when using WSH, I

write in VBScript 99 percent of the time and use JScript for things that just

happen to be easier to do in JScript.

Because WSH is a large topic, and many books have been written on it,

there’s no way I can cover everything you need to know to convert all your

WSH scripts to Windows PowerShell. If the stuff you have is really compli-

cated, it makes far more sense to examine how the script works and rethink it

in Windows PowerShell than to try to do a verbatim conversion. Interestingly

enough, the vast majority of WSH scripts use only a few different, important

techniques, which are reused in many ways. I focus on those scripts in this

section. After all, when you know how to do something one way, it’s easy to

figure out how to apply that technique to similar tasks.

Comparing the basics
You already know how to do simple things like echoing something to the

screen and using if statements and for loops. (If not, you may want to

refresh a bit by taking a look at Chapter 6.) All the looping and switching con-

structs in WSH have direct counterparts in Windows PowerShell. Both WSH

and Windows PowerShell have variables that can be variant, which means

that they can take the value of any data type.

The biggest difference between the two is that WSH scripts are compiled in

real time, when you run them, whereas Windows PowerShell scripts are inter-

preted. Why should you care? Because WSH scripts are compiled just before

execution, you can do things like put functions and subprocedures anywhere

in the script file and use them within your script normally. In Windows

PowerShell, because it’s interpreted, any function that you want to create

and use has to be defined before it can be used. What this generally means is

that you have to write all your functions at the top of the script before you

can actually use them; otherwise, Windows PowerShell spits out an error

saying that the function is not recognized when it gets to that point within

your script.

 In case you don’t know, a clear distinction exists between functions and sub-

procedures in VBScript. The main difference is that functions can return a

value, whereas subprocedures can’t. Windows PowerShell doesn’t have such a

distinction.

Working with COM objects
One of the most attractive features of WSH, and one that makes it very popu-

lar, is that WSH makes it easy to create instances of Component Object Model

DropBooksDropBooks

308 Part V: Real-World Windows Administration Using PowerShell

(COM) objects and interact with them. Anything installed in Windows that

has a COM interface (such as Microsoft Office) can be manipulated through

WSH. Windows PowerShell is no different — and can interact easily with .NET

objects as well.

The COM object that I see most commonly in WSH scripts is Scripting.
FileSystemObject. You use that object to manipulate files within the file

system, including reading from and writing to files. In Windows PowerShell,

you don’t have to rely on this COM object to do this job, because plenty of

Cmdlets can do it for you. I cover this topic a bit later in this chapter, in the

section “Handling I/O.”

An example of the need to use COM even in Windows PowerShell is when you

interact with Microsoft Office applications. It’s quite popular to take input

from a Microsoft Excel document or even use Excel to generate and format

reports from data collected by your script. Here’s a simple WSH script that

creates an instance of Excel, adds a workbook, makes the workbook visible,

and then populates the first ten rows of the first column:

Set objXL = CreateObject(“Excel.Application”)
objXL.workbooks.add
objXL.Visible = TRUE

For x = 1 to 10
 objXL.Cells(x,1).value = x
Next

Set objXL = Nothing

When you convert that piece of code to Windows PowerShell, it looks

like this:

$objXL = New-Object -ComObject Excel.Application
[void]$objXL.Workbooks.Add()
$objXL.visible = $true

for($x = 1; $x -le 10; $x++)
{
 $objXL.Cells.item($x,1) = $x
}

Remove-Variable objXL

You can see that the two pieces of code are almost mirrors, except that

depending on the COM object you’re using, you may have to accommodate

some idiosyncrasies of Windows PowerShell. The Excel.Application’s

workbooks.add method returns a Workbook object, for example. You

can assign it to some variable for use later in both VBScript and Windows

PowerShell. The assignment of this return value is purely optional. The

DropBooksDropBooks

309 Chapter 22: Converting Your Old Scripts: Out with the Old, In with the New

difference is that in Windows PowerShell, if you don’t assign this returned

value to a variable, the default behavior occurs, which is to output that

object (or, rather, the properties of that object) to the screen. To prevent

this result, you cast the call to the add method as [void], which sends that

output to a virtual black hole.

 Any time you do anything in Windows PowerShell that returns a value, and

you don’t want to store the value in a variable or display it to the screen, you

can always prefix it with [void] to suppress it.

Another difference between WSH and Windows PowerShell is how you inter-

act with the cells within a worksheet. In VBScript, you just specify which cell

you want to act on by specifying the row and column to the Cells object

and then access its value property to read or set its value. In Windows

PowerShell, you refer to a cell through the Cell object’s item method,

which takes the same row and column values as its VBScript counterpart.

 If you run the VBScript and Windows PowerShell versions of that script side

by side, you’ll find that the VBScript version runs faster than Windows Power

Shell. Whereas VBScript interacts with COM objects directly, Windows PowerShell,

which is built on top of the .NET Framework, has to use little connectors

called interop assemblies to allow it to talk to non-.NET objects. This additional

layer incurs a performance penalty. For best performance when migrating

code that uses COM, see whether a .NET class does the same thing, and if so,

use that class instead.

Understanding the difference between
CreateObject and GetObject
One detail I gloss over in the preceding section is how to use the New-
Object to create an instance of a COM object, just like CreateObject does

in VBScript. The reason is that in VBScript, you can use two methods to inter-

act with and connect to a COM object: CreateObject and GetObject. The

easiest way to understand the subtle but important difference between the

two methods is that CreateObject creates an instance of a COM object that

doesn’t exist, whereas GetObject references an object that does exist.

You see, whenever you call CreateObject, you create a new instance of that

object. If you write a script that runs CreateObject on Excel.Application

three times without quitting each instance and then look at Task Manager, you’

see three separate Excel processes running — one for each time you called

CreateObject. This is why CreateObject maps itself directly to the New-
Object Cmdlet with the -ComObject switch.

DropBooksDropBooks

310 Part V: Real-World Windows Administration Using PowerShell

What about GetObject? In practice, GetObject is mostly used for two

things in WSH: Windows Management Instrumentation (WMI) and Active

Directory Services Interfaces (ADSI). Windows PowerShell simply doesn’t

have GetObject functionality. Microsoft’s Script Center has some hacky

workarounds, but again, try to rethink this scenario. If you find yourself

longing for the GetObject function because you have scripts that use WMI,

when you try to migrate that function to Windows PowerShell, you really

should be using the Get-WMIObject Cmdlet instead. This Cmdlet is not only

designed to fulfill all your WMI needs, but also uses native .NET assemblies,

so it runs faster in Windows PowerShell than COM ever will.

As for relying on GetObject to access ADSI providers such as Lightweight

Directory Access Protocol (LDAP) for Active Directory or WinNT to access

local security accounts, you don’t need to use GetObject for that purpose

either. Windows PowerShell is fully capable of talking to ADSI sources directly

via the [ADSI] type adapter. A what adapter? No Get-ADSIObject, Get-
LDAPObject, or Get-WinNTObject Cmdlet is similar to Get-WMIObject.

Instead, the way you connect to an ADSI source effectively by casting an ADSI

string with the [ADSI] type adapter. Still confused? Don’t fret — it’s much

easier than it sounds. Here’s a classic example of a VBScript-based WSH code

snippet that uses the ADSI LDAP provider to get the distinguished name for

all objects in the users container in Active Directory (I cover Active Directory

scripting in greater detail in Chapter 20):

strDomain = “DC=testdom,DC=local”
Set objUsersContainer = GetObject(“LDAP://cn=users,” & strDomain)
For Each objUser in objUsersContainer
 WScript.Echo objUser.Get(“distinguishedName”)
Next

In Windows PowerShell, you bypass the GetObject method and do this

instead:

$strDomain = “DC=testdom,DC=local”
$objUsersContainer = [ADSI](“LDAP://cn=users,” +

$strDomain)
foreach($objUser in $objUsersContainer.children)
{
 Write-Host $objUser.Get(“distinguishedName”)
}

By prefixing the LDAP string with the [ADSI] type adapter, you’re effectively

telling Windows PowerShell to go ahead and use the ADSI LDAP provider,

which it does natively rather than trying to use the old GetObject method.

The only other change is minor and occurs within the for loop: You have

to tell the foreach loop explicitly that you want to get to the children of

the container object. Otherwise, the script will display simply the distin-

guished name of the container, not its contents.

DropBooksDropBooks

311 Chapter 22: Converting Your Old Scripts: Out with the Old, In with the New

Handling I/O
If you want to read/write files or do anything file-system-related, you almost

always use Scripting.FilesystemObject in WSH to help you out. Luckily,

Windows PowerShell makes it just as easy (if not easier) to work with files, so

rather than present a bunch of mini scripts for you to compare, I thought it

best to present Table 22-2, which shows you how to accomplish a file-system

task in WSH and in Windows PowerShell. For the WSH examples, assume that

the variable fso is an instance of Scripting.FileSystemObject.

Table 22-2 Comparing File-System Commands
Purpose WSH (VBScript) Windows

PowerShell

Check whether a
file exists

Fso.FileExists(“C:\
myfile.txt”)

Test-Path “C:\
myfile.txt”

Check whether a
folder exists

fso.FolderExists(“C:\
myfolder”)

Test-Path “C:\
myfolder”

Check whether a
drive exists

fso.DriveExists(“C:”) Test-Path “C:”

Get the filename fso.GetFileName(“C:\
myfile.txt”)

(Get-ChildItem
“C:\myfile.
txt”).basename

Get the file
extension

fso.GetExtensionName(“C:\
myfile.txt”)

(Get-ChildItem
“C:\myfile.
txt”).
extension

Get the parent
folder name

fso.GetParent
FolderName(“C:\myfolder\
otherfile.txt”)

(Get-ChildItem
“C:\myfolder\
otherfile.
txt”).
DirectoryName

Read the entire
contents of a file

fso.OpenTextFile(
“C:\myfile.txt”,
ForReading)
contents = fso.
ReadAll fso.close

$contents =
Get-Content
“C:\myfile.
txt”

(continued)

DropBooksDropBooks

312 Part V: Real-World Windows Administration Using PowerShell

Table 22-2 (continued)
Purpose WSH (VBScript) Windows PowerShell

Read one line of
a file

fso.OpenTextFile(“C:\
myfile.txt”,ForReading)
line = fso.ReadLine fso.
close

$linecontent
= Get-Content
“C:\myfile.txt”
–totalcount 1

Write a line to a
file

fso.OpenTextFile(“C:\
myfile.
txt”,ForWriting,true)
fso.writeline(“This is a
line of text!”) fso.close

Out-File “C:\
myfile.txt”
–input “This
is a line of
text!”

Append a line to
a file

fso.OpenTextFile(“C:\
myfile.
txt”,ForAppending,true)
fso.writeline(“This is a
line of text!”) fso.close

Add-Content
“C:\myfile.txt”
–value “This
is a line of
text!”

Working with ActiveX Data
Objects (ADO)
In the past few years, there has been a significant trend toward using ActiveX

Data Objects (ADO) within WSH scripts, not always to access data sources (such

as Microsoft SQL), but to take advantage of something called disconnected

recordsets. You can think of disconnected recordsets as being database tables

that you create in memory. The rationale for using ADO is that if you can

grab data and put it in tabular format so that it can be inserted into a discon-

nected recordset, you can take advantage of ADO features to do all kinds

of data operations, such as sorting and filtering. These functions are highly

efficient, and this technique has proved to be highly effective for those who

write complex WSH-based data processing scripts.

 ActiveX is the product name, if you will, that Microsoft gave to its Component

Object Model, which today is referred to simply as COM. ActiveX and COM are

one and the same thing.

ADO is COM–based, as its name implies, so it’s tempting to use the New-
Object Cmdlet with the -ComObject switch to create ADO objects and do

as you please. The problem, of course, is that any time you work with COM

from Windows PowerShell, performance is a bit on the slow side, and in many

cases in which existing ADO–based scripts are used, you notice a marked

and possibly unacceptable performance decrease if you try to port this script

DropBooksDropBooks

313 Chapter 22: Converting Your Old Scripts: Out with the Old, In with the New

directly to Windows PowerShell as is. You get around this performance bot-

tleneck by saying good-bye to ADO and saying hello to ADO.NET.

Leveraging ADO.NET to your advantage
As the name implies, ADO.NET is a .NET version of your old friend ADO. It

takes the ADO functionality and puts it into .NET–managed code by creating

a well-defined set of .NET classes that duplicate and then improve on the old

ADO concepts. I wouldn’t exactly call it ADO on steroids, but certainly, from

Windows PowerShell’s perspective, ADO.NET is the more civilized and well-

mannered version of its COM–based sibling.

The upside of using ADO.NET is that it’s faster, uses well-defined .NET data

types, and works predictively like other .NET classes in terms of the names

of the methods and properties used. The downside exists only if you’re trying

to bring over code written to use the old ADO, because you first have to figure

out how to do the same thing in ADO.NET by using its new classes and meth-

ods. The hard reality is that even if you try to fudge by reusing your ADO code

directly, you inevitably run into strange little Windows PowerShell idiosyncra-

sies that force you to look up the Windows PowerShell method anyway.

An ADO RecordSet is typically the data returned as a result of some query.

A disconnected recordset occurs when you disconnect from the source such

as the SQL database) while keeping the recordset in memory. You can keep

using the recordset without having to stay connected to the source, which is

a really good thing, because you don’t have to tie up a connection to use the

data. You can also create a disconnected recordset manually, which allows

you to store data in memory in a very convenient tabular format.

You create a disconnected recordset manually by creating an instance of the

ADODB.Recordset object. Next, you use its Fields.Append method to

define the various columns in your recordset. Then you read in some generally

structured data (such as those in a CSV-value or XML flat file) and insert that

data into the recordset. When all your data has been converted from whatever

format it’s in to the columns you’ve defined in your recordset, you can take

advantage of sort and filtering methods to extract the data you want from it.

Generally, WSH scripts that use ADO are very long. The next example con-

tains all the elements I just talked about, but I keep it as simple as possible so

that you can focus on how to convert it rather than wasting brain cells trying

to figure out what I’m doing in the script in the first place. The script in the

example creates a recordset with three columns — username, firstname, and

lastname — defined as columns of the varchar (variable number of char-

acters) data type and having a length of 100 characters. I add a few rows to

DropBooksDropBooks

314 Part V: Real-World Windows Administration Using PowerShell

the recordset, display its contents first in current unsorted order, and then

display the contents again after sorting by the username column. Finally, I

create a filter so that only usernames starting with the letter b get included

and then output the recordset again. Here’s the example:

CONST adVarChar = 200

Set objADORS = CreateObject(“ADODB.Recordset”)
objADORS.Fields.Append “username”,adVarChar,100
objADORS.Fields.Append “firstname”,adVarChar,100
objADORS.Fields.Append “lastname”,adVarChar,100
objADORS.Open

objADORS.AddNew
objADORS(“username”) = “sseguis”
objADORS(“firstname”) = “Steve”
objADORS(“lastname”) = “Seguis”
objADORS.Update

objADORS.AddNew
objADORS(“username”) = “bstewart”
objADORS(“firstname”) = “Bryan”
objADORS(“lastname”) = “Stewart”
objADORS.Update

objADORS.AddNew
objADORS(“username”) = “bfranklin”
objADORS(“firstname”) = “Bob”
objADORS(“lastname”) = “Franklin”
objADORS.Update

WScript.Echo “Unsorted...”
objADORS.Movefirst
While Not objADORS.EOF
 WScript.echo objADORS(“username”) & “ – “ & objADORS(“firstname”) & “ “ &

objADORS(“lastname”)
 objADORS.Movenext
Wend
WScript.Echo “”
WScript.Echo “Sorted by username...”
objADORS.Sort=”username”
objADORS.Movefirst
While Not objADORS.EOF
 WScript.echo objADORS(“username”) & “ – “ & objADORS(“firstname”) & “ “ &

objADORS(“lastname”)
 objADORS.Movenext
Wend

WScript.Echo “”
WScript.Echo “Filtered for usernames starting with the letter B...”

DropBooksDropBooks

315 Chapter 22: Converting Your Old Scripts: Out with the Old, In with the New

objADORS.Filter=”username LIKE ‘b*’”
objADORS.Movefirst
While Not objADORS.EOF
 WScript.echo objADORS(“username”) & “ – “ & objADORS(“firstname”) & “ “ &

objADORS(“lastname”)
 objADORS.Movenext
Wend

Set objADORS = Nothing

The output of this script is

Unsorted...
sseguis - Steve Seguis
bstewart - Bryan Stewart
bfranklin - Bob Franklin

Sorted by username...
bfranklin - Bob Franklin
bstewart - Bryan Stewart
sseguis - Steve Seguis

Filtered for usernames starting with the letter B...
bfranklin - Bob Franklin
bstewart - Bryan Stewart

ADO.NET doesn’t have a RecordSet object; instead, you use the System.
Data.DataTable class to achieve the same effect. To achieve the same

effect as the preceding WSH–based script, you have to

 1. Create an instance of System.Data.DataSet.

 2. Add a table (System.Data.DataTable) to the dataset.

 3. Add columns (System.Data.DataColumn) to the tables.

 4. For each entry you want to add to the tables, create a new row (System.
Data.DataRow), populate the data, and then add the row to the table.

You display the row in the DataTable object by looping through it, using

a foreach loop. The only caveat is that unlike ADO’s RecordSet object, a

DataTable object can’t be sorted or filtered. ADO.NET separates the data

from its presentation, so sorting and filtering are actually done by changing

these properties for the view (System.Data.DataView) associated with the

DataTable. The result is equally fast code with exactly the same output:

$objDS = New-Object system.Data.DataSet
$objDS.Tables.Add(“userlist”)
[void]$objDS.Tables[“userlist”].Columns.Add(“username”,[string])
[void]$objDS.Tables[“userlist”].Columns.Add(“firstname”,[string])
[void]$objDS.Tables[“userlist”].Columns.Add(“lastname”,[string])

DropBooksDropBooks

316 Part V: Real-World Windows Administration Using PowerShell

$objDR = $objDS.Tables[“userlist”].NewRow()
$objDR[“username”] = “sseguis”
$objDR[“firstname”] = “Steve”
$objDR[“lastname”] = “Seguis”
$objDS.Tables[“userlist”].Rows.Add($objDR)

$objDR = $objDS.Tables[“userlist”].NewRow()
$objDR[“username”] = “bstewart”
$objDR[“firstname”] = “Bryan”
$objDR[“lastname”] = “Stewart”
$objDS.Tables[“userlist”].Rows.Add($objDR)

$objDR = $objDS.Tables[“userlist”].NewRow()
$objDR[“username”] = “bfranklin”
$objDR[“firstname”] = “Bob”
$objDR[“lastname”] = “Franklin”
$objDS.Tables[“userlist”].Rows.Add($objDR)

Write-Host “Unsorted...”
foreach($row in $objDS.Tables[“userlist”])
{
 Write-Host ($row[“username”] + “ - “ + $row[“firstname”] + “ “ +

$row[“lastname”])
}

Write-Host “`nSorted by username...”
$objDV = $objDS.Tables[“userlist”].Defaultview
$objDV.Sort = “username”
foreach($row in $objDV)
{
 Write-Host ($row[“username”] + “ - “ + $row[“firstname”] + “ “ +

$row[“lastname”])
}

Write-Host “`nFiltered for usernames starting with the letter B...”
$objDV.RowFilter = “username LIKE ‘b*’”
foreach($row in $objDV)
{
 Write-Host ($row[“username”] + “ - “ + $row[“firstname”] + “ “ +

$row[“lastname”])
}

 On additional thing to point out is that ADO.NET uses standard .NET data types,

so when you define the columns, you don’t use data types like varchar and

define the columns’ length. Instead, you tell ADO.NET to use the String data

type, which grows automatically to accommodate text of any length.

DropBooksDropBooks

Part VI
Configuring and
Reporting Via
PowerShell

DropBooksDropBooks

In this part . . .

I’m rounding off the book with topics that I feel are

important to discuss but don’t fit cleanly into the other

parts of this book. I cover managing your network configu-

ration through Windows PowerShell in Chapter 23.

Gathering hardware info and connecting to printers is

addressed in Chapter 24. I also talk a bit about using

Windows PowerShell to generate simple reports from the

data retrieved by Cmdlets or even your own scripts in

Chapter 25. Even if you don’t necessarily have the need

for this kind of functionality today, I recommend going

over these chapters anyway because many of the tech-

niques I use in these chapters apply to all kinds of situa-

tions, so there’s a lot in there to pick up from.

DropBooksDropBooks

Chapter 23

Controlling Your Network
Configuration

In This Chapter
▶ Taking charge of your network configuration

▶ Getting friendly with the Win32_NetworkAdapterConfiguration WMI class

▶ Interacting with the Windows Firewall using the HNetCfg.FwMgr COM object

Computers are pretty cool by themselves, but they show their true

potential when they’re networked. Have you ever been without Internet

connectivity for a week? How about a day? Did you feel lost and disconnected

from the world? No, this discussion isn’t the prelude to an antidepressant

drug commercial; I’m merely pointing out that getting online has become as

important to people as having their morning coffee.

Network settings are often configured automatically through the use of a

Dynamic Host Configuration Protocol (DHCP) server, which dishes out IP

addresses and DNS addresses to requesting hosts such as your computer.

This DHCP server functionality can exist in your home router that connects

you to the Internet or, in corporate environments, run on servers. Either way,

the result is the same: You plug in your Ethernet cable or set up your wire-

less connection, and your computer automatically gets the settings it needs

to talk to other computers on your network and even out on the Internet.

In this chapter, you explore Windows PowerShell’s ability to query and make

changes to your network configuration. You also use the HNnetCfg.FwMgr

COM object to control the Windows Firewall.

DropBooksDropBooks

320 Part VI: Configuring and Reporting Via PowerShell

Managing Your Network Settings
In some cases, you may want to manually configure the network settings

on the host directly. This scenario is typical for servers that need fixed IP

addresses so that other computers can locate them and for computers that

have special requirements (such as your home computer, if you want to set

up features like port forwarding on your router so that applications like video-

conferencing or certain games work correctly). Whatever the reason, you can

manage your network settings through the Windows GUI or, if you’re a bit

more savvy, through command line tools or even Windows PowerShell.

Command line tools such as netsh (network shell) are often used to perform

command line configuration of network interface settings. This tool works

great, but the downside is that netsh has no real scripting or programming

capabilities built in. If you want to do something unique, such as configure

the DNS server’s IP address based on a computer name, netsh can’t help you

directly. You still have to rely on scripting languages such as Windows Shell

Scripting or Windows Scripting Host (WSH) to do this logic for you and then

run netsh with the parameters you derive.

Familiarizing yourself with Win32_
NetworkAdapterConfiguration
Now comes the juicy part. You can manipulate your TCP/IP settings by using

Windows PowerShell in two ways:

 ✓ Because Windows PowerShell is capable of running regular command

line executables, you can simply use it to run netsh for you.

 ✓ The other method involves taking advantage of the Win32_
NetworkAdapterConfiguration class of Windows Management

Instrumentation (WMI), a very powerful class that has properties and

methods for reading and modifying the network configuration of any of

the network adapters on your computer.

To get a taste for what this WMI class can do for you, look at Table 23-1 and

Table 23-2 to see some highly useful methods and properties.

 You can think of a method as being a function that belongs to a class and is

used for interacting with it. If you think of this WMI class as a cellphone, the

methods are the equivalents of the buttons that tell the phone what to do,

such as hang up or increase the volume.

DropBooksDropBooks

321 Chapter 23: Controlling Your Network Configuration

Table 23-1 Important Methods for
 Win32_NetworkAdapterConfiguration
Method Purpose

EnableDHCP Configures the adapter to use DHCP to
obtain its settings

EnableDNS Enables DNS to be used for this network
adapter

EnableStatic Configures the adapter to use a static (man-
ually set) IP configuration rather than DHCP

ReleaseDHCPLease Releases the DHCP lease of the network
adapter

ReleaseDHCPLeaseAll Releases the DHCP leases of all the network
adapters

RenewDHCPLease Renews the DHCP lease of the network
adapter

RenewDHCPLeaseAll Renews the DHCP leases of all the network
adapters

SetDNSDomain Sets the DNS domain

SetDNSServerSearchOrder Defines the order for DNS lookups

SetDNSSuffixSearchOrder Defines the DNS suffix order

Table 23-2 Important Properties for Win32_
 NetworkAdapterConfiguration
Property Purpose

DefaultIPGateway Returns an array of IP addresses rep-
resenting the default gateways used
by the computer.

Description Describes the network interface.

DHCPEnabled Returns whether DHCP is enabled.

DHCPLeaseExpires Returns the date and time when the
DHCP lease expires.

DHCPLeaseObtained Returns the date and time when the
DHCP lease was obtained.

DHCPServer Returns the IP address of the DHCP
server from which the IP address was
obtained.

(continued)

DropBooksDropBooks

322 Part VI: Configuring and Reporting Via PowerShell

Table 23-2 (continued)
Property Purpose

DNSDomain Returns the DNS domain for the
computer.

DNSDomainSuffixSearchOrder Returns an array of DNS suffixes in
the current search order.

DNSHostName Returns the hostname of the computer
used by DNS.

DNSServerSearchOrder Returns an array of IP address of DNS
servers in the order in which they are
contacted.

IPAddress Returns an array of all IP addresses
of the computer. In Windows Vista or
Windows Server 2008 and later, this
property can return IPv6 as well as
IPv4 addresses.

IPEnabled Returns whether TCP/IP is enabled for
the network interface.

IPSubnet Returns the subnet mask associated
with the current network adapter.

MACAddress Returns the Media Access Control
(MAC - physical layer) address of the
network interface.

MTU Returns the Maximum Transmission
Unit (MTU) for the network interface.

ServiceName Returns a short version of the product
name of the network adapter.

Retrieving your TCP/IP settings
You have to know where you stand before you can get anywhere, so retrieving

your TCP/IP settings is the first skill you need to master before making any

 changes. You get the DNS hostname by querying Win32_NetworkAdapter
Configuration for adapters on which TCP/IP is enabled and then retrieving

the DNSHostName property. If you have multiple network adapters on your com-

puter, each one has a DNSHostName property, but all these properties have the

same value, so to suppress the duplicates, you filter the code through the

Select-Object Cmdlet to grab only unique values. The result is

DropBooksDropBooks

323 Chapter 23: Controlling Your Network Configuration

$myhost = Get-WmiObject Win32_NetworkAdapterConfiguration -filter “IPEnabled =
true” | Select-Object DNSHostName –unique

Write-Host $myhost.DNSHostName

Similarly, to get the description, IP address, subnet mask, and default gate-

way for each IP–enabled network adapter, you can run

$netconfig = Get-WmiObject Win32_NetworkAdapterConfiguration -filter “IPEnabled
= true”

foreach($adapter in $netconfig)
{
 Write-Host (“Description: “ + $adapter.description)
 Write-Host (“IP Address : “ + $adapter.IPAddress[0])
 Write-Host (“Subnet Mask: “ + $adapter.IPSubnet[0])
 Write-Host (“Gateway : “ + $adapter.DefaultIPGateway[0])
}

Because the IPAddress, IPSubnet, and DefaultIPGateway properties

are arrays, you specifically select the first element in the array. On Windows

Vista and Windows Server 2008 computers, the first element is usually the

IPv4 address, whereas the second element is the IPv6 address. You can leave

off the array index, if you want, and Windows PowerShell automatically dis-

plays all the values for that property.

You can use the same procedure to obtain any of the properties listed in

Table 23-2, earlier in this chapter. The most important thing is to make sure

that you put the filter in for IPEnabled = true. Many interfaces that

Windows sees aren’t what you and I would consider to be typical network

interfaces, and they generally won’t be configured with any TCP/IP configura-

tion, so you want to exclude those interfaces by using that filter before trying

to access any of the properties that are TCP/IP–specific.

Manipulating your TCP/IP settings
When you’re mucking around with your TCP/IP settings, you’re usually trying

to achieve one of two things:

 ✓ Troubleshoot a connectivity problem (maybe you didn’t get an IP

address from your DHCP server)

 ✓ Change your TCP/IP settings because now you’re on a different network

I’m going to start with the troubleshooting scenario, which is probably more

common.

DropBooksDropBooks

324 Part VI: Configuring and Reporting Via PowerShell

Troubleshooting connectivity
In many cases, your network adapter is configured for DHCP, and for some

reason, your computer didn’t get its TCP/IP settings from the DHCP server,

or you already have a DHCP server configuration but need to obtain new

settings because the server settings have changed. In both cases, the best

thing to do is to release and then renew your IP configuration. This technique

forces the network adapter to clear its current IP configuration and acquire a

new one from the DHCP server.

Most computers have only one network interface in use at a time, so the

easiest way to accomplish this task is to release and renew the IP address

for all interfaces. The quirk is that releasing and renewing the DHCP con-

figuration for all network adapters has to be done through the Win32_
NetworkAdapterConfiguration class directly, not through one of its

instances. You do this by using Get-WmiObject to list all the WMI objects

and then select the one called Win32_NetworkAdapterConfiguration.

Then, using this object, you can run ReleaseDHCPLeaseAll() and

RenewDHCPLeaseAll(), like this:

Write-Host “Releasing IP Configuration... “
$retVal =(Get-WMIObject –list | Where-Object {$_.Name –eq “Win32_

NetworkAdapterConfiguration”}).ReleaseDHCPLeaseAll()
if ($retVal.ReturnValue –eq 0) {
 Write-Host “Successfully released IP Configuration!”
 Write-Host “Renewing IP configuration...”
 $retVal = (Get-WMIObject –list | Where-Object {$_.Name –eq “Win32_

NetworkAdapterConfiguration”}).RenewDHCPLeaseAll()
 if ($retVal.ReturnValue –eq 0) {
 Write-Host “Successfully renewed IP configuration!”
 } else {
 Write-Host “ERROR: Unable to renew IP configuration!”
 }
} else {
 Write-Host “ERROR: Unable to release IP configuration!”
}

You can also release and renew the IP configuration on a per-adapter

basis. You simply reuse the code from the preceding section to retrieve

IP settings, but instead of looking up a property, you use it to call the

ReleaseDHCPLease() and RenewDHCPLease() methods. You can even

specify which adapter by using Where-Object to select the adapter you

want, based on the description of the network interface. My laptop, for exam-

ple, has both a wired and a wireless network interface. One interface is Intel-

based, and the other is Broadcom-based. To make sure that I’m releasing and

renewing only the Intel-based interface, I can use this code:

$adapter = Get-WmiObject Win32_NetworkAdapterConfiguration -filter “IPEnabled =
true” | Where-Object {$_.Description.StartsWith(“Intel”)}

$adapter.ReleaseDHCPLease()
$adapter.RenewDHCPLease()

DropBooksDropBooks

325 Chapter 23: Controlling Your Network Configuration

If you have a network interface with its IP configuration statically set, and

you want to change it to DHCP, you can use the EnableDHCP method for that

instance, as follows:

$adapter = Get-WmiObject Win32_NetworkAdapterConfiguration -filter “IPEnabled =
true” | Where-Object {$_.Description.StartsWith(“Intel”)}

$adapter.EnableDHCP()
$adapter.SetDNSServerSearchOrder(@())

 It’s important to set the DNS server search order to an empty array to clear

any DNS settings that were manually configured. This allows Windows to use

the settings that were obtained from the DHCP server.

Changing TCP/IP settings
In the second scenario, you move the computer’s network interface to

another network that doesn’t support DHCP, or you’d like to use your own

settings instead. To do this, you have to disable DHCP and use static entries.

Unlike setting EnableDHCP, which you set and are done with, setting your IP

configuration manually means supplying all the TCP/IP settings that it needs.

Here’s some code that sets the IP address, subnet mask, default gateway, and

DNS servers:

$adapter = Get-WmiObject Win32_NetworkAdapterConfiguration -filter “IPEnabled =
true” | Where-Object {$_.Description.StartsWith(“Intel”)}

$adapter.EnableStatic(“172.16.0.10”,”255.255.255.0”)
$adapter.SetGateways(“172.16.0.1”)
$adpater.SetDNSServerSearchOrder(@(“172.16.0.2”,”172.16.0.3”))

You can use the same technique to set additional network configuration set-

tings, such as Windows Internet Name Service (WINS) addresses (if you still

use WINS). Just make sure that you use the appropriate methods for each of

the properties.

Managing Your Windows Firewall
Computer firewalls add a layer of extra security by controlling what kind

of network traffic can come into (and, in many cases, out of) the computer.

A software-based firewall isn’t a replacement for a good hardware firewall,

but I consider Windows Firewall to be a good last line of defense. The first

iteration of Windows Firewall came with Windows XP Service Pack 2. It was

a minimal implementation of a firewall; nevertheless, some security is better

than none. It really gave you only a bit of control for incoming traffic based

on port or application.

DropBooksDropBooks

326 Part VI: Configuring and Reporting Via PowerShell

Windows Vista continued to build on Windows Firewall technology, provid-

ing the same on-and-off switch that existed in Windows XP Service Pack 2

and, of course, the same capabilities for creating exceptions, but the Service

Pack added the ability to create outbound rules as well. Windows Server 2008

and Vista share these enhancements of Windows Firewall. You can not only

create very granular inbound firewall rules, but also define outbound rules,

further restricting what leaves your server in the first place.

Getting to know the Windows
Firewall COMmander
The gatekeeper of Windows Firewall automation is the COM object called

HNetCfg.FwMgr. Unfortunately, a native .NET version of this COM object

doesn’t exist, but that’s not going to stop you. You create an instance of

HNetCfg.FwMgr just as you would any COM object, by using the New-
Object Cmdlet with the -com switch, like this:

$fwmgr = New-Object –COM HNetCfg.FwMgr

Using this COM object, you can query your firewall settings or even make

changes, if you want, by interacting with a set of methods and properties.

Table 23-3 lists most of the ones you’re going to be interested in.

Table 23-3 Methods and Properties of HNetCfg.FwMgr
Name Purpose Accessed Through

Authorized
Application

Read-only collection of autho-
rized applications for a given
profile

CurrentProfile or
a profile retrieved from
GetProfileByType

CurrentProfile Read-only value that points to
the profile currently in use

LocalPolicy
property

Current
ProfileType

Read-only value that defines
the type of profile currently in
use

Directly from COM
object

Exceptions
NotAllowed

Read/write value that defines
whether exceptions to the fire-
wall policies are allowed

CurrentProfile or
a profile retrieved from
GetProfileByType

FirewallEnabled Read/write value that defines
whether the firewall is enabled

CurrentProfile or
a profile retrieved from
GetProfileByType

(continued)

DropBooksDropBooks

327 Chapter 23: Controlling Your Network Configuration

Name Purpose Accessed Through

GetProfile
ByType

The profile based on the given
Windows Firewall type

LocalPolicy
property

Globally
OpenPorts

Read-only collection of globally
open ports defined in a given
profile

CurrentProfile or
a profile retrieved from
GetProfileByType

IcmpSettings The ICMP settings for a given
profile

CurrentProfile or
a profile retrieved from
GetProfileByType

Notifications
Disabled

Read/write value that defines
whether users are notified
if something wants to gain
access through the firewall

CurrentProfile or
a profile retrieved from
GetProfileByType

RemoteAdm
inSettings

The settings for remote
administration

CurrentProfile or
a profile retrieved from
GetProfileByType

Services Read-only collection of ser-
vices for a given profile

CurrentProfile or
a profile retrieved from
GetProfileByType

Type Windows Firewall type of a
profile

CurrentProfile or
a profile retrieved from
GetProfileByType

 For a detailed listing of all the methods and properties supported by

HNetCfg.FwMgr, as well as methods and properties for some of the addi-

tional objects used within this COM object, such as Internet Control Message

Protocol (ICMP) settings, search for Windows Firewall tools and settings on

Microsoft’s TechNet site (http://technet.microsoft.com).

Enabling and disabling
the Windows Firewall
You can disable or enable Windows Firewall by modifying the

FirewallEnabled property of the firewall’s current profile. Likewise, you

can query this property if you want to find out what its current state is.

Here’s some code that enables Windows Firewall, if it isn’t already enabled:

$objFirewall = New-Object –COM HNetCfg.FwMgr
if ($objFirewall.FirewallEnabled –eq $false) {
 #Enable the Windows Firewall
 $objFirewall.LocalPolicy.CurrentProfile.FirewallEnabled = $true
}

DropBooksDropBooks

328 Part VI: Configuring and Reporting Via PowerShell

Disabling the firewall works the same way, except instead of setting

$objFire wall.LocalPolicy.CurrentProfile.FirewallEnabled to

$true, you set it to $false.

 Windows Vista and Windows Server 2008 allow you to manage Windows

Firewall settings remotely. The default setting is to not allow this behavior, so

if you want to take advantage of it, you need to enable this function explicitly

by running this code:

$objFirewall = New-Object –COM HNetCfg.FwMgr
$objFirewall.LocalPolicy.CurrentProfile.RemoteAdminSettings.Enabled = $true

Making yourself visible
Internet Control Message Protocol (ICMP) is designed mostly for getting error

states. The best-known of all these states is the ICMP echo response, other-

wise known as the ping, which is often used as quick test to see whether a

host is up. The concept is simple: Send the host an ICMP echo packet, and if

you get a response, the host must be up. This technique is great for home or

office use because it’s a quick-and-dirty way to see whether a computer is on

the network.

A ping might be disadvantageous on the Internet, however. If your laptop

is connected directly to the Internet, and someone is scanning the Internet

for computers that are available (perhaps with malicious intent), your ICMP

echo response is a dead giveaway that your computer is “alive” and listening.

This behavior is undesirable, so the default setting in Windows Firewall is to

disallow inbound ICMP echo requests but you may want to enable it anyway

if you’re on a well-secured network and your computer is behind some other

firewall (such as a hardware firewall) anyway. You enable this by changing

the AllowInboundICMPEchoRequest property of the current profile’s

ICMPSettings like this:

$objFirewall = New-Object –COM HNetCfg.FwMgr
$ICMPSettings = $objFirewall.LocalPolicy.CurrentProfile.ICMPSettings
$ICMPSettings.AllowInboundechoRequest = $true

Getting a list of all authorized
applications
The most basic firewalls control access by limiting what gets through based

on source or target IP and port information. Windows Firewall can also con-

trol firewall access on a per-application basis, so you don’t have to know

DropBooksDropBooks

329 Chapter 23: Controlling Your Network Configuration

which ports the application uses. You simply allow an application to go

through the firewall, and Windows lets it communicate regardless of which

port it wants to use. You can get a list of all authorized applications by running

$objFirewall = New-Object –COM HNetCfg.FwMgr
$authorizedApps = $objFirewall.LocalPolicy.CurrentProfile.AuthorizedApplications
Write-Host “Authorized applications... “
foreach($app in $authorizedApps)
{
 Write-Host (“`nName : “ + $app.Name)
 Write-Host (“Executable : “ + $app.ProcessImageFileName)
 Write-Host (“Remote Address : “ + $app.RemoteAddresses)
 Write-Host (“Enabled : “ + $app.Enabled)
}

Getting a list of all globally open ports
Globally opened ports are ports that have been opened to allow network traf-

fic through. They’re the holes in your firewall, so to maximize your security

profile, your goal should be to limit the number of open ports to those that

are absolutely necessary. To find out what’s currently open, you can run this

code:

$objFirewall = New-Object –COM HNetCfg.FwMgr
$openPorts = $objFirewall.LocalPolicy.CurrentProfile.GloballyOpenPorts
Write-Host “Globally open ports... “
foreach($port in $openPorts)
{
 Write-Host (“Name : “ + $port.Name)
 Write-Host (“Port : “ + $port.Port)
 Write-Host (“Protocol : “ + $port.Protocol)
 Write-Host (“Remote Address : “ + $port.RemoteAddresses)
 Write-Host (“Enabled : “ + $port.Enabled)
 Write-Host (“Built-In : “ + $port.Builtin)
}

Using the big reset button
So you’ve been playing around with HNetCfg.FwMgr, gotten excited, and

made all kinds of changes — and suddenly, something that used to work

over your network interface stopped working. You’ve already closed your

Windows PowerShell window, of course, so you can’t just go back to the

history to see what commands you’ve run, and you really don’t remember

DropBooksDropBooks

330 Part VI: Configuring and Reporting Via PowerShell

what you did, so you’re not sure what to revert to anyway. Luckily for you, a

big reset button is built into Windows Firewall to put it back to its default set-

tings. Using this button is as simple as running

$objFirewall = New-Object –COM HNetCfg.FwMgr
$objFirewall.RestoreDefaults()

 It’s very important to understand that RestoreDefaults() takes Windows

Firewall’s settings back to their “out of the box” state. It doesn’t roll back your

changes. If you customized your Windows Firewall settings before screwing

everything up, RestoreDefault wipes out those changes as well.

DropBooksDropBooks

Chapter 24

Managing Your Hardware
In This Chapter
▶ Getting hardware information

▶ Checking your hardware state

▶ Managing your print queues

You can argue that software is what really makes a computer, but with-

out the hardware, software would have no foundation to stand on. Even

though virtualization has really taken off in recent years, in the end, you’re

still limited in functionality to the hardware that the software can access. This

means that getting to know what hardware you’re on can be very important.

In practice, you typically want to query hardware information for only two

reasons: to generate an inventory of what devices you have installed or to

find out whether some piece of hardware is installed to determine whether

you should take some other action. If you can determine whether a device

is a laptop based on the hardware installed, for example, you can do fancy

things like run certain commands based on whether your PowerShell script is

running on a laptop or a desktop.

In this chapter, you interrogate your hardware by querying a number of differ-

ent WMI classes that deal with the different kinds of hardware on a computer.

This is extremely important if you want to create proactive monitoring scripts

that keep an eye on hardware errors. It’s also very useful for generating hard-

ware inventory if you want to create a crude asset management script. I also

delve a bit into working with printers, including the ever-important monitoring

of print queues (ever notice the chaos around the office when people

can’t print?).

DropBooksDropBooks

332 Part VI: Configuring and Reporting Via PowerShell

Polling Your Hardware
I’m willing to bet that 99 percent of the time, when you want to write a script

that deals with hardware, it isn’t because you’re trying to change those hard-

ware configurations but to find out what hardware you have and, possibly,

what state it’s in. You can poll almost anything about your computers by

using Windows Management Instrumentation (WMI), which you can use as a

basis for inventory reports.

In my experience, polling hardware is also critical for managing systems that

aren’t on your network all the time. These systems can be laptops or desktops

that aren’t always connected to your main network and may use a Virtual

Private Network (VPN) connection to connect remotely. Some organizations

have a rule that if you’re connected via VPN through one network device, all

other network devices should be disabled to prevent the computer from acting

as a bridge for other computers to connect through. In this case, you can write

a script to make sure that if the user is connected to the network via a wired

connection such as Ethernet, you can disable the other network interfaces,

such as wireless.

 VPNs are made by connecting one network to another by transmitting the data

through other networks (such as the Internet), which are often out of your

control and potentially unsecure. The data itself is secured by encrypting the

data as it’s sent, so even if the data is intercepted by someone sitting in the

network in between, he can’t find out what the original data is. Because the

data is shielded by encryption while it’s in transit, VPN connections are also

called VPN tunnels when they’re established.

Finding out what hardware you have
The PC world has been blessed and cursed by the hundreds of kinds of hard-

ware and the seemingly infinite combinations of these items to end up with a

computer that can run Windows. Although many standards have come into

place to make talking to different kinds of devices much easier, in the end, it

would be a real pain if you had to remember how to talk to hardware from

one vendor versus another.

Your best friend in this case is WMI. You can use WMI to query all kinds of

things about the hardware that you have. WMI creates a level of abstraction

that allows you to do things like get your BIOS version without having to

know who manufactured the BIOS in the first place.

DropBooksDropBooks

333 Chapter 24: Managing Your Hardware

Creating a hardware inventory script
Because so many kinds of devices might be attached to a computer through

one of its many ports and internal connections, you’re probably not going to

be interested in all of them. When you create a hardware inventory script,

you’re going to want to cherry-pick the ones that you care most about, which

usually are

 ✓ Manufacturer

 ✓ Model

 ✓ BIOS version

 ✓ Serial number

 ✓ CPU type

 ✓ Number of CPUs

 ✓ Total amount of physical memory

 ✓ Drives installed, including capacity

 ✓ Video card manufacturer/model

 ✓ Network interfaces

Having all this hardware information without a few key pieces of software

information might not be very useful, so in addition to the list of hardware

I just enumerated, here are a few pieces of software information that you

should gather:

 ✓ Computer name

 ✓ Operating system (including build number and Service Pack)

 ✓ Logical partitions (including size and free space)

I’m sure that you can come up with even more things to add to this list, but

try to stay focused on these major things for now. Listing 24-1 provides a

script that uses WMI to gather and then display all the information listed in

the two preceding bulleted lists.

Listing 24-1: Querying Computer Information Using WMI
$strComputer = “.”

$objBIOS = Get-WMIObject -class “Win32_BIOS” -namespace “root\CIMV2”
foreach($item in $objBIOS)
{
 $manufacturer = $item.Manufacturer
 $biosver = $item.BIOSVersion

(continued)

DropBooksDropBooks

334 Part VI: Configuring and Reporting Via PowerShell

Listing 24-1 (continued)
 $serialnum = $item.SerialNumber
}

$objCompSys = Get-WmIObject -class “Win32_ComputerSystem” -namespace “root\
CIMV2”

foreach($item in $objCompSys)
{
 $compname = $objCompSys.Name
 $model = $objCompSys.Model
 $physicalRAM = [Math]::Ceiling($item.TotalPhysicalMemory / 1MB)
 $numProcs = $item.NumberOfProcessors
}

$objOS = Get-WMIObject -class “Win32_OperatingSystem” -namespace “root\CIMV2”
foreach($item in $objOS)
{
 $OS = $item.Caption + “ Build “ + $item.BuildNumber + “ “ + $item.CSDVersion
}

$objProc = Get-WMIObject -class “Win32_Processor” -namespace “root\CIMV2”
foreach($item in $objProc)
{
 $procType = $item.Name
 $procSpeed = $item.MaxClockSpeed
}

Write-Host (“Name : “ + $compname)
Write-Host (“OS : “ + $OS)
Write-Host (“Manufacturer : “ + $manufacturer)
Write-Host (“Model : “ + $model)
Write-Host (“BIOS Version : “ + $biosver)
Write-Host (“Serial Number : “ + $serialnum)
Write-Host (“CPU : “ + $procType)
Write-Host (“CPU Speed : “ + $procSpeed)
Write-Host (“No. CPUs : “ + $numProcs)
Write-Host (“Physical RAM : “ + $physicalRAM + “ MB”)

Write-Host “`nPhysical Disks:”
$objDiskDrive = Get-WMIObject -class “Win32_DiskDrive” -namespace “root\CIMV2”

-filter “MediaType Like ‘Fixed%’”
foreach($item in $objDiskDrive)
{
 Write-Host (“ * Manufacturer: “ + $item.Manufacturer)
 Write-Host (“ Model : “ + $item.Model)
 Write-Host (“ Size : “ + [Math]::Ceiling($item.Size / 1MB) + “

MB”)
}

Write-Host “`nLogical drives:”
$objDrives = Get-WMIObject -class “Win32_LogicalDisk” -namespace “root\CIMV2”

-filter “DriveType=’3’”

DropBooksDropBooks

335 Chapter 24: Managing Your Hardware

Listing 24-1
foreach($item in $objDrives)
{
 Write-Host (“ * Drive Letter: “ + $item.DeviceID)
 Write-Host (“ Volume Name : “ + $item.VolumeName)
 Write-Host (“ Capacity : “ + [Math]::Ceiling($item.Size / 1MB) + “

MB”)
 Write-Host (“ Free Space : “ + [Math]::Ceiling($item.FreeSpace / 1MB) +

“ MB (“ + `
 [Math]::Ceiling(($item.FreeSpace/1MB) / ($item.Size/1MB) * 100)+

“%)”)
}

Write-Host “`nVideo Cards:”
$objVideo = Get-WMIObject -class “Win32_VideoController” -namespace “root\CIMV2”
foreach($item in $objVideo)
{
 Write-Host (“ * Name : “ + $item.Caption)
 Write-Host (“ VRAM : “ + [Math]::Ceiling($item.AdapterRAM / 1MB) +

“ MB”)
}

Write-Host “`nNetwork Adapters:”
$objNetwork = Get-WMIObject -class Win32_NetworkAdapter -namespace “root\CIMV2”
foreach($item in $objNetwork)
{
 Write-Host (“ * Name : “ + $item.ProductName)
 Write-Host (“ Type : “ + $item.AdapterType)
 Write-Host (“ MAC Address : “ + $item.MACAddress)
}

As you can see, you have to use different WMI classes depending on the kind

of information you want. The procedures are the same for any kind of prop-

erty that is available through WMI.

I’d like to highlight a few techniques in this example. When querying for

physical disk drives, for example, I added an extra filter to the WMI query:

$objDiskDrive = Get-WMIObject -class “Win32_DiskDrive” -namespace “root\CIMV2”
-filter “MediaType Like ‘Fixed%’”

The reason is that the Win32_DiskDrive WMI class returns fixed internal

drives as well as drives with removable media, such as DVD-ROM drives. To

get only internal, physical disks, you have to filter for objects in which the

MediaType starts with the word Fixed. If you go online to find examples of

WMI queries for Win32_DiskDrive, you might find examples in which the

value of MediaType is Fixed hard disk. This is fine in Windows NT/2000/

XP and Windows Server 2003, but in Windows Vista and Windows Server 2008,

DropBooksDropBooks

336 Part VI: Configuring and Reporting Via PowerShell

Microsoft changed the media types to differentiate fixed hard drives from

external hard drives and removable media drives. By checking for only the

first part of the string, you can have a query that works in every version of

Windows that supports WMI.

Another technique I use in the script calculates disk sizes and free space.

Because almost all the WMI classes return the sizes of disks and memory in

bytes, it’s often better to convert these values to megabytes (MB) before dis-

playing them to the user. In the past, you had to do this by dividing the value

by 1024 to get the number of kilobytes (KB) and then dividing the number of

kilobytes by 1024 to get the value in megabytes. Windows PowerShell pro-

vides a shortcut by allowing you to divide values with special modifiers to

calculate the size automatically in KB, MB, or gigabytes (GB). (I’m so glad the

Window PowerShell developers are just as lazy as me.) This shortcut is

$physicalRAM = [Math]::Ceiling($item.TotalPhysicalMemory / 1MB)

To convert a value that’s in bytes to megabytes, just divide the bytes by 1MB;

Windows PowerShell does all the dirty work for you. Whenever you divide

a number, there’s a good chance that you’ll end up with additional decimal

values. To keep the output as clean and simple as possible, you can use the

[Math]::Ceiling function to round the value automatically to the next

whole integer.

 If you want to include a few decimal places in the resulting value, you can use

the [Math]::Round function instead. This function takes two parameters.

The first parameter is the value you want to round off, and the second param-

eter is the number of decimal places you want to keep. If you want to display

the physical RAM in megabytes and show up to two significant digits after the

decimal place, you can use this code:

$physicalRAM = [Math]::Round($item.TotalPhysicalMemory /
1MB, 2)

Detecting whether the computer is a laptop
As I mention at the beginning of this chapter, having a script that’s intelligent

enough to detect whether it’s being run on a laptop is quite useful. You may

want to run a script that changes the power settings on the computer — but only

if the computer is a laptop. The correct way (if there is such a thing) to check

whether a machine is a laptop is to query the Win32_SystemEnclosure WMI

class and then get the values for the ChassisTypes property, which can be one

or more of 24 numeric values that describe the kind of chassis the computer is

in. Table 24-1 breaks down the 24 numeric values.

DropBooksDropBooks

337 Chapter 24: Managing Your Hardware

Table 24-1 Win32_SystemEnclosure
 ChassisTypes Values

Value Definition

1 Other

2 Unknown

3 Desktop

4 Low Profile Desktop

5 Pizza Box

6 Mini Tower

7 Tower

8 Portable

9 Laptop

10 Notebook

11 Hand Held

12 Docking Station

13 All in One

14 Sub Notebook

15 Space-Saving

16 Lunch Box

17 Main System Chassis

18 Expansion Chassis

19 SubChassis

20 Bus Expansion Chassis

21 Peripheral Chassis

22 Storage Chassis

23 Rack Mount Chassis

24 Sealed-Case PC

As you can see, this classification can a bit silly. After all, what’s really the

difference among a laptop, a notebook, and a subnotebook? Honestly, I don’t

even know what some of these things are. Sometimes. I think Microsoft stuck

DropBooksDropBooks

338 Part VI: Configuring and Reporting Via PowerShell

some values in there just to see if we’re paying attention. Do you know what

a chassis type of 16 (Lunchbox) means, for example? Are we sending kids

to school now with computerized lunchboxes that keep track of their peanut

butter and jelly sandwiches?

To get detection to work properly by using this method, you actually have to

check whether the ChassisTypes values contain any different values that

could denote a laptop, such as checking whether the chassis type is a laptop

or a notebook. In Windows PowerShell, you can determine whether a com-

puter is a laptop by using the Win32_SystemEnclosure class like this:

$objEnclosure = Get-WmiObject -class Win32_SystemEnclosure -namespace “root\
CIMV2”

$chassisTypes = $objEnclosure.ChassisTypes
if (($chassisTypes -contains 8) -or `
 ($chassisTypes -contains 9) -or `
 ($chassistypes -contains 10) -or `
 ($chassisTypes -contains 14))
{
 Write-Host “This is a laptop!”
} else {
 Write-Host “This is NOT a laptop!”
}

It’s really up to the PC manufacturer to return the correct value, so mini-

mally, you’ll want to check whether ChassisTypes contains the values for

Portable, Laptop, Notebook, and Sub Notebook.

Another way is simply to check whether the computer has a battery.

Technically, this method isn’t accurate, because I’m sure there could be

a computer that has a battery but isn’t a laptop — such as a server with a

smart Uninterruptible Power Supply (UPS). To use this shortcut method, you

have to look at the computers in your environment and assess whether this

simplification will work for you. I’d say that 99 percent of the time, this check

will be more than sufficient:

$objBattery = Get-WMIObject –class Win32_Battery –namespace “root\CIMV2”
if ($objBattery –ne $null) {
 Write-Host “This is a laptop!”
} else {
 Write-Host “This is NOT a laptop!”
}

Whether you can get away with this simplification depends purely on the

computers you have in your environment. If you know that you don’t have

batteries attached to anything but your laptops, this check is one way to

keep things simple. If it doesn’t work for you, but you know that all your lap-

tops have PCMCIA devices, you can use the same code, but instead of check-

ing for Win32_Battery, look for Win32_PCMCIAController by running

DropBooksDropBooks

339 Chapter 24: Managing Your Hardware

$objBattery = Get-WMIObject –class Win32_PCMCIAController –namespace “root\
CIMV2”

if ($objBattery –ne $null) {
 Write-Host “This is a laptop!”
} else {
 Write-Host “This is NOT a laptop!”
}

Finding any connected USB disk drives and memory sticks
In business, a company’s success is often the result of some advantage over

its competitors. This advantage can be purely financial (which company

has deeper pockets), but in many cases, it can involve intellectual property

or some kind of technology that makes one company more efficient than

another. It’s no surprise that there’s been a trend toward implementing solu-

tions that detect possible compromises of your company’s information. If

you’re already monitoring e-mail and Web traffic, a simple and cost-effective

method is to prevent unauthorized use of USB disk drives and memory

sticks on your computers so that the data can’t simply be copied from those

devices.

To do this, you can run a script on a computer periodically to check for any

attached USB disk drives or memory sticks. Then you can write this informa-

tion to the event log for auditing later. If you want to be proactive, you can

even pop up a message to inform the user that he or she has inserted an

unauthorized device into the computer and that the IT department has been

notified. Just don’t be surprised when your popularity rating in the company

drops as a result of your “Big Brother” antics.

Aside from security detection, there are several reasons why you may want

to detect the existence of a USB disk drive or memory stick. If you want your

My Documents folder to be synchronized automatically with your USB drive

whenever you insert it, for example, you can use a script that detects USB

drives to initiate this process for you. To check for USB drives, query the

Win32_DiskDrive WMI object and look for instances where the Media type

starts with the word Removable and contains the word USB in its caption,

like this:

$usbDevices = Get-WmiObject –class Win32_DiskDrive –namespace “root\CIMV2”
–filter “MediaType Like ‘Removable%’ AND Caption Like ‘%USB%’”

if($usbDevices –eq $null){
 Write-Host “No USB drives detected!”
} else {
 Write-Host “USB drives detected:”
 foreach($item in $usbDevices) {
 Write-Host (“ * “ + $item.Caption)
 }
}

DropBooksDropBooks

340 Part VI: Configuring and Reporting Via PowerShell

Checking hardware state
Knowing what hardware you have is a good start, but sometimes, just know-

ing that some piece of hardware is connected isn’t sufficient. Checking for

the state of your hardware is just as important. Most hard drives sold today

have something called Self-Monitoring, Analysis, and Reporting Technology

(SMART). A drive with this technology can try to diagnose itself and warn

you of a predicted failure so that you have adequate time to replace the

drive before it fails (and drives tend to magically fail at the worst possible

moment). You do pay attention to warnings, right?

You can make a quick health check of the drives on your computer by query-

ing the status property for Win32_DiskDrive, like this:

Get-WMIObject –class Win32_DiskDrive | Select-Object caption,status

In fact, two properties in almost all WMI classes deal with logical devices and

are useful for getting state information. These properties are availability

and status. These properties aren’t guaranteed to have a value for all your

devices, so you’ll have to check the values to see which ones apply to the WMI

class you’re interested in. If it’s defined, you can use the availability prop-

erty to check for the power state of a device. The availability property can

take an integral value from 1 through 17, but the most common values are

 ✓ 3: Running or Full Power

 ✓ 7: Power Off

 ✓ 13: Power Save (Unknown)

 ✓ 14: Power Save (Low Power Mode)

 ✓ 15: Power Save (Standby)

The status property should contain the general state of the device as a

string. Although different WMI classes define different possible values for

status, the ones you’ll run into most often are

 ✓ OK

 ✓ Error

 ✓ Degraded

 ✓ Unknown

 ✓ Pred Fail (indicates a predicted failure or malfunction of the device)

 ✓ Starting

 ✓ Stopping

DropBooksDropBooks

341 Chapter 24: Managing Your Hardware

Controlling Your Printers
The digital age was supposed to put an end to the need for paper. The real-

ity is that computers just make it even easier to generate content to put on

paper. Even if you do your best to avoid printing whenever possible, some-

times you simply can’t avoid it. You just have to print some things, such as

the confirmation e-mail for that e-ticket for your flight to Vegas, just in case

the airline’s computers suddenly think that you’re not supposed to be on

that flight.

In my many years of working in IT, I’ve found that of all the services that

people start to freak over when things don’t work, printing is near the top

of that list (probably after Internet access and e-mail). It’s not uncommon to

find one printer for every 20–30 people within a company, so if you have a

decent-size company, you’ll find yourself managing dozens, if not hundreds,

of printers. The key to keeping your sanity and being proactive is staying on

top of printer management through automation.

Connecting to a shared network printer
If you’re lucky enough to have tech-savvy users, it’s easy to show them how

to find and connect to network printers. Unfortunately, in most cases, users

either want an even easier method for connecting to network printers or to

have the printers map automatically when they log in. I’ve even seen admin-

istrators go a step further and write scripts to figure out which is the closest

printer based on the printer’s IP address or computer description. You add a

printer by using the Win32_Printer WMI class’ AddPrinterConnection

method, like this:

([wmiclass]”Win32_Printer”).AddPrinterConnection(“\\servername\printershare”)

Note that you don’t use Get-WMIObject to access Win32_Printer to add

the printer connection. You don’t do this as a shortcut. The difference is

that Get-WMIObject returns instances of the Win32_Printer WMI class,

whereas using the [wmiclass] prefix means that you’re getting the actual

Win32_Printer class instead.

In practice, if you run Get-WMIObject on Win32_Printer, you get a

bunch of objects that represent the printers installed on the computer.

Well, you don’t add printers to printers; you add printers to computers. So

AddPrinterConnection doesn’t make sense in the context of an instance

of Win32_Printer. Instead, you have to use the AddPrinterConnection

method on the Win32_Printer class directly, so you use the [wmiclass]

accelerator instead.

DropBooksDropBooks

342 Part VI: Configuring and Reporting Via PowerShell

Disconnecting a shared network printer
The procedure for removing a connection to a shared network printer is a

bit different from adding a printer. There’s no RemovePrinterConnection

method in the Win32_Printer class. Instead, you need to use Get-
WMIObject on Win32_Printer to get the instance of the printer you want

to remove and call its Delete method, like this:

$printer = Get-WMIObject –class Win32_Printer –filter “Name=’\\\\servername\\
printershare’”

$printer.Delete()

 If you use backslashes in a Get-WMIObject filter, you have to make sure that

you use a double backlash (\\) for every actual backslash in the filter string.

Setting the default printer
You commonly find users connected to more than one printer because the

other printers have additional capabilities that their default printer doesn’t

or because they want a backup in case the primary one isn’t available. You

change the default printer by running the SetDefaultPrinter method on

the instance that you want to make your default printer, like this:

$printer = Get-WMIObject –class Win32_Printer –filter “Name=’\\\\servername\\
printershare’”

$printer.SetDefaultPrinter()

Checking up on printer state
Printers are sometimes temperamental (or, as some of my users have said,

possessed) and can encounter all kinds of trouble. Being physical devices,

printers can experience a lot of bad things. They can run out of ink, run out

of paper, or even have a paper jam. On the virtual side, you may have a print

job that the print driver can’t process correctly. All these things can cause

the queue to back up as other jobs wait their turn to be printed as soon as

the issue has been cleared.

If you want to write a printer-monitoring script, the first places to check are

the status and error states of the printer itself. Listing 24-2 shows how you

do this by reading the PrinterStatus and DetectedErrorState proper-

ties of the Win32_Printer WMI class.

DropBooksDropBooks

343 Chapter 24: Managing Your Hardware

Listing 24-2: Script for Checking Printer Status

$objPrinters = Get-WMIObject -class Win32_Printer
foreach($printer in $objPrinters)
{
 switch($printer.Printerstatus)
 {
 1 {$status = “Other”}
 2 {$status = “Unknown”}
 3 {$status = “Idle”}
 4 {$status = “Printing”}
 5 {$status = “Warming Up”}
 6 {$status = “Stopped Printing”}
 7 {$status = “Offline”}
 }

 switch($printer.DetectedErrorState)
 {
 0 {$errorState = “Unknown”}
 1 {$errorState = “Other”}
 2 {$errorState = “No Error”}
 3 {$errorState = “Low Paper”}
 4 {$errorState = “No Paper”}
 5 {$errorState = “Low Toner”}
 6 {$errorState = “No Toner”}
 7 {$errorState = “Door Open”}
 8 {$errorState = “Jammed”}
 9 {$errorState = “Offline”}
 10 {$errorState = “Service Requested”}
 11 {$errorState = “Output Bin Full”}
 }

 Write-Host (“* Name : “ + $printer.name)
 Write-Host (“ Status : “ + $status)
 Write-Host (“ Error State: “ + $errorState)
}

Keeping an eye on the printer queue
If anything on a print server needs close attention, it’s the print queue. Besides

checking the printer state to make sure that your printers are functioning

normally, you need to determine the number of items in each of your printer

queues. You determine this number by querying the Win32_PerfFormatted
Data_Spooler_PrintQueue WMI class. Whether you have one printer or

many printers installed, there’ll always be a print queue called _Total that

contains a total of all the print queues on the system. Although this data can

DropBooksDropBooks

344 Part VI: Configuring and Reporting Via PowerShell

be useful in some instances, in general you’re going to want to pay closer

to attention to each individual print queue so that you know which printer

needs attention. The next example demonstrates how you use the Win32_
PerfFormattedData_Spooler_PrintQueue WMI object to get information

about print queues:

$objPrintQueues = Get-WMIObject –class Win32_PerfFormattedData_Spooler_
PrintQueue –filter “Name <> ‘_Total’”

foreach($queue in $objPrintQueues)
{
 Write-Host (“* Queue Name : “ + $queue.Name)
 Write-Host (“ Number of Jobs : “ + $queue.Jobs)
 Write-Host (“ Job Spooling : “ + $queue.JobsSpooling)
 Write-Host (“ Job Errors : “ + $queue.JobErrors)
 Write-Host (“ Not Ready Errors : “ + $queue.NotReadyErrors)
 Write-Host (“ Out of Paper Errors: “ + $queue.OutOfPaperErrors)
}

If you’re trying to write a script to check your print queue’s health, you can

use those error counters as a trigger for some action. If the out-of-paper error

count is greater than zero, for example, you can send an e-mail to an admin

who can make sure that paper is added to the printer. Also, if the number of

jobs just keeps increasing and never goes down, you should take a look at the

printer to see whether one of the jobs got stuck or someone suddenly decided

to print a thousand-page memoir of life as a cubicle junkie.

DropBooksDropBooks

Chapter 25

Making Reporting Easy
In This Chapter
▶ Using Cmdlets to tabulate your data

▶ Formatting how your data gets displayed

▶ Generating HTML–based reports that stand out

▶ Employing third-party reporting tools

If you ever watch movies that have a military theme, you’ll hear the term

“situational awareness” thrown about, or you’ll hear someone barking

out the need for a SITREP (situation report). Why is this important? Whether

you’re a battlefield commander or a white-collar manager, you can’t make

decisions in a void. Instead, what you need is real information about what-

ever situation you’re in so that you can make an educated decision about the

direction in which to proceed.

This is why reports are so important. Even if you’re not managing people,

it’s important to be able to get information and put it in a format that turns

the information into knowledge. This task can be as simple as combining

information in a single, human-readable format or doing something fancy like

representing your network’s operating system distribution in a pie chart.

What matters most is to get the information you’re looking for into a readily

accessible format.

Then again, I’m sure that you know or have known a manager or two (or twelve)

who like to ask for reports simply because the request makes them sound

managerial, when the truth is that they really have no clue what you’re talk-

ing about. It’s okay. Just make your reports look pretty, keep talking technical

until the manager gets a blank look on his or her face, and then walk away.

Who’s the dummy now?

In this chapter, you find out how to export information you gather using

Windows PowerShell into different formats you can use to generate reports.

Although Windows PowerShell by itself doesn’t have the ability to generate

fancy-looking reports, you can use some very useful Cmdlets to output your

results into CSV, XML, and even HTML files with very little effort.

DropBooksDropBooks

346 Part VI: Configuring and Reporting Via PowerShell

Using Built-In Reporting Cmdlets
Okay, so maybe I’m stretching facts a little by talking about built-in report-

ing Cmdlets. The Cmdlets I talk about in this section can definitely help you

make reports, but they aren’t necessarily designed for that purpose alone.

For reporting, the Cmdlets you’re going to want to pay most attention to are

the ones that allow you to format, view, and possibly export data in a specific

manner, such as these:

 ✓ Format-Table

 ✓ Export-Csv

 ✓ Export-Clixml

 ✓ ConvertTo-CSV

 ✓ ConvertTo-Html

 ✓ ConvertTo-Xml

 ✓ Out-GridView

Format-Table is great for creating a tabular representation of data

onscreen; you can redirect this data to a text file. ConvertTo-HTML is a ter-

rific Cmdlet to use when you want to format your tabular data in an HTML

page for easy viewing in your favorite Web browser. Out-GridView lets you

display data in an interactive, graphical table that you can sort and search in.

The other Cmdlets let you export to CSV- and XML-formatted text files, which

is a great intermediate format that you can import and reformat using other

tools such as Microsoft Excel.

Generating Reports
Your first step in creating reports is gathering the data you want to present.

In general, this task involves putting that data in tabular format (if it isn’t

already) and then outputting it to the screen, a file, or maybe even a printer.

A lot of Cmdlets that display useful information (such as Get-Service and

Get-ChildItem) already display the data in tabular format, so why mess

with it? The default format is usually well chosen and displays the most

important information readily. Sometimes, though, you may want to change

a few things, such as replacing the header names with something other than

the property names defined by the Cmdlet.

DropBooksDropBooks

347 Chapter 25: Making Reporting Easy

Customizing tabular output
with Format-Table
The Format-Table Cmdlet gives you additional control of the tabular

output for a given object or collection of objects. If you run Get-ChildItem

against a directory in your file system, you get four properties displayed

by default: mode, LastWriteTime, length, and name properties. If you

want just the Name and Length properties to be displayed, you can use the

Select-Object Cmdlet to do that for you. If you want to add some extra

formatting, such as displaying Length in kilobytes instead of bytes, you

really need Format-Table. Here’s an example:

Get-ChildItem C:\Windows | Format-Table –property name,@{Label=”Size (KB)”;
Expression={[Math]::Ceiling($_.length/1KB)}}

The best part of Format-Table is that it gives you the ability to define your

own columns, which is how you can display the length (size) of the file in

kilobytes instead of bytes. You do this by defining a hash table where you

put the property name. This hash table must consist of at least two key/value

pairs. The first is the Label key, which defines the heading for that column.

The second is the Expression key, which is a PowerShell expression used

to derive the value of each row of the table in this column.

 You use the $_ character sequence when you want to represent the object that’ll

be dynamically retrieved for each item from the command just preceding this

section in the command pipeline.

Another reason for using the hash table Label/Expression combo to

define your own columns is to rename a column in the output. One Cmdlet

that’s notorious for using very terse column headers is Get-Process.

Working Set Memory, for example, is abbreviated as WS(K) in the default

Get-Process output. If you want to display the process name, description,

ID, and working set in a more user-friendly format, you can define your own

column headerswhile keeping the same values. As you can see in the next

code snippet, instead of just asking for the WS property for the process, I put

that property in an expression instead and change the label of the column

to Working Set (Memory – KB) so that the output is much easier to

understand:

Get-Process | Format-Table –property name,description,id,@{Label=”Working Set
(Memory – KB)”; Expression={$_.WS}}

DropBooksDropBooks

348 Part VI: Configuring and Reporting Via PowerShell

Setting column width in Format-Table
Format-Table tries to be intelligent. It automatically expands and con-

tracts each column’s width so that when the table is displayed, it takes up

the entire screen width. Sometimes, this behavior isn’t what you want; you

want to explicitly control how wide each column is. Besides the Label and

Expression properties, you can specify a width value to control how many

characters wide the column will be. This is how the last command in the pre-

ceding section looks if you want to set the widths of each of the columns:

Get-Process | Format-Table –property {@{Label=”Name”; Expression={$_.Name};
width=10}, @{Label=”Description”; Expression={$_.Description};
width=15}, @{Label=”ID”; Expression={$_.id}; width=5},@
{Label=”Working Set (Memory – KB)”; Expression={$_.WS}; width=15}

Using an interactive data table
One limitation of using Format-Table is that after the output is displayed,

you really can’t do anything else with it. If you want to sort by a different

column, you have to rerun the command through a Sort-Object Cmdlet.

One of the cool new Cmdlets in Windows PowerShell 2 is Out-GridView.

The grid view generated by Out-GridView is an interactive table format that

you can sort in dynamically; it also has search capabilities that allow you to

find data within the data view easily. Getting tabular data to display in a grid

view requires nothing more than piping the objects to the Out-GridView

Cmdlet, like this:

Get-Process | Out-GridView

You can see what this looks like in Figure 25-1.

You can sort by any column simply by clicking the column header, just as

you’d expect. As soon as you start typing text in the search box, the data

view automatically filters for matches (see Figure 25-2).

You can even group the data by right-clicking the column header and choosing

the Show in Groups option from the shortcut menu. This technique is particu-

larly useful if you’re correlating data based on a specific property — if you’re

loading data from one of the event logs to the grid view and want to group it

by source or level, for example.

DropBooksDropBooks

349 Chapter 25: Making Reporting Easy

Figure 25-1:
The grid

view.

Figure 25-2:
Filtered grid
view with a
query string

provided.

Preparing data for other reporting tools
Although Windows PowerShell does have some capabilities for creating

reports, you may prefer to use your own reporting software. Microsoft Excel

is a great tool for generating reports, for example. The key is getting the data

into a format that the reporting software can use, which means getting the

data into a structured format that you can import easily into that application.

The two best formats for this purpose are CSV (or any other delimited format)

and XML. Delimited files, such as CSV files, are perfect for defining relatively

simple tabular data, whereas data defined as XML can be more flexible at the

cost of being just a bit more complicated.

DropBooksDropBooks

350 Part VI: Configuring and Reporting Via PowerShell

You use the Export-Csv, Export-CliXml, ConvertTo-CSV, and Convert
To-Xml Cmdlets to convert the data you’ve acquired through Windows Power

Shell to one of these intermediate formats that other applications can process.

 Export-CSV and ConvertTo-CSV are actually the same; they convert

Windows PowerShell objects to comma-separated (or any other delimiter)

strings. The only difference is that Export-CSV expects to write the CSV

strings to a file, whereas ConvertTo-CSV simply returns the string objects.

Likewise, Export-CliXml and ConvertTo-XML both convert Windows

PowerShell objects to a XML representation, the only difference being that the

Export version outputs directly to a file. This next example shows how you

can export the results of running Get-Process to either a CSV or XML format:

Get-Process | Export-CSV c:\temp\processlist.csv
Get-Process | Export-CliXml c:\temp\processlist.xml

Making your data table ready
So far in this chapter, I’ve been using built-in Cmdlets that already return

Windows PowerShell objects, so the Cmdlets for manipulating these objects

into tabular data work as described. This may not be the case all the time.

If you write a script that extracts data from various sources, such as Active

Directory or Windows Management Instrumentation (WMI), and want to com-

bine this data into a tabular format of your own, your initial instinct may be

to format the output as a table manually by using Write-Host statements.

Although that technique works if you’re just going to display the information

to the screen, it doesn’t scale very well. You can’t reuse that formatted data if

you want to take advantage of any of the other Cmdlets that manipulate tabu-

lar data, such as Export-CSV.

The solution is to put your data in a PowerShell object. When you create your

own PowerShell object, it’s like creating your own unique data object. You

can add whatever kind of property you want to it and set its values. Now that

you have a PowerShell object with properties and values, Cmdlets such as

Format-Table and Export-CSV know how to handle that object, because

it’s just like every other object they might get from some other Cmdlet.

Here’s how you create a custom PowerShell object:

$objPerson = New-Object PSObject
Add-Member –InputObject $objPerson –MemberType NoteProperty –Name “FirstName”

–value “Steve”
Add-Member –InputObject $objPerson –MemberType NoteProperty –Name “LastName”

–value “Seguis”
Add-Member –InputObject $objPerson –MemberType NoteProperty –Name “Description”

–value “Author”

DropBooksDropBooks

351 Chapter 25: Making Reporting Easy

After you run that code, $objPerson points to a PowerShell object that has

three properties: FirstName, LastName, and Description, the values of

which are Steve, Seguis, and Author, respectively. Now that you have an

object, all the other Cmdlets you saw earlier work as you’d expect. In this

example, you can see that standard Windows PowerShell Cmdlets can be

used with $objPerson because it’s treated as any other PSH object:

$objPerson | Format-Table
$objPerson | ConvertTo-Csv
$objPerson | Out-GridView

Now you know how to create your own PowerShell objects. As you can see,

however, when you output $objPerson, it contains only one row of data.

You’re going to want to have the ability to add rows. Don’t bother looking for

an AddRow method in PSObject, because there isn’t any. Although you can

easily display a Windows PowerShell object in tabular format by using each

property name as the column header, you really shouldn’t think of the object

itself as a table. Instead, think of a PowerShell object as a row within the

table. In a table, rows share a column header, so to create a table with many

rows by using PowerShell objects, you have to create multiple PowerShell

objects and put them together in a collection. As long as each object in the

collection has the same properties, you can think of the collection as being a

table, with each object being treated as a row within that table.

To do this, first you create a collection such as an array; then you loop

through all the items you want to add to your table. For each of your rows,

you create a new PSObject, which you add to the collection at the end of

the loop after you’ve defined the properties and values for that object. After

all the objects have been created and added to the collection, you can do

with them as you please, just like any other PowerShell objects returned by

Cmdlets like Get-Process. In this case, you’re just going to pass the array

through Format-Table to make sure that the output does indeed contain

ten rows, each with values 0 through 9 and that the square of each of these

numbers is listed in the next column:

$myColl = @()

for($i = 0; $i -lt 10; $i++)
{
 $myObj = New-Object PSObject
 Add-Member -InputObject $myObj -MemberType NoteProperty -Name “Number” -Value

$i
 Add-Member -InputObject $myObj -MemberType NoteProperty -Name “Square” -Value

($i * $i)
 $myColl += $myObj
}

$myColl | Format-Table

DropBooksDropBooks

352 Part VI: Configuring and Reporting Via PowerShell

The output of this script is

 Number Square
 ------ ------
 0 0
 1 1
 2 4
 3 9
 4 16
 5 25
 6 36
 7 49
 8 64
 9 81

Making Reports Pretty
The way that information in a report is presented can make the difference

between a report you can extract useful information from and one that looks

like one big data dump. To generate more visually pleasing reports by using

nothing but what comes with Windows PowerShell, you have to use the

ConvertTo-Html Cmdlet. This Cmdlet generates a HTML representation

of your data by using nothing other than a HTML table. You can display all

your service information in HTML form by running this code (you can see the

resulting HTML file in Figure 25-3):

Get-Service | Select-Object Name,DisplayName,Status | ConvertTo-Html | Out-File
c:\temp\services.html

Figure 25-3:
HTML file

generated
 by

ConvertTo-
HTML.

DropBooksDropBooks

353 Chapter 25: Making Reporting Easy

 Use Select-Object before passing the objects to ConvertTo-HTML to

select the specific properties you want to include in the HTML output; other-

wise, by default ConvertTo-HTML includes every property defined in the

objects it sees which often contains too much information. Alternatively, you

can use the -property switch in ConvertTo-HTML to specify which proper-

ties you want.

Converting the output to HTML is certainly a graphical improvement over

just having the information displayed in Windows PowerShell, but it still

lacks something that makes the output pop when you look at it. The page

just looks too generic. For starters, the page is simply called HTML Table; the

fonts are generic; and the page is just plain black and white. You can improve

this output a little by changing the title and by adding a header and footer so

that the report looks more reportlike. You can even throw a splash of color

into the header to make it more appealing. Here’s an example:

$title = “Service Status”
$heading = “<CENTER><H2>Service Status</H2></CENTER>”
$footer = “<P><CENTER>Generated on : “ + (Get-Date) + “</CENTER>”

Get-Service | Select-Object Name,DisplayName,Status | ConvertTo-Html -Title
$title -PreContent $heading -PostContent $footer | Out-File
services.html

As you may expect, the string you specify in the -Title parameter becomes

the title of the page. Any HTML code that you put in the -PreContent

parameter gets placed before any of the objects are converted to a table;

then anything you define in the -PostContent parameter is appended. With

just those few changes, the old HTML page you had on the first go-around is

starting to look alive. You can see how that modification changed the way the

HTML page looks in Figure 25-4.

Formatting Using Cascading Style Sheets
Cascading Style Sheets (CSS) are files that describe how content within an HTML

file should be formatted for display. You can define the fonts, colors, and sizes

of the text based on the HTML tags surrounding them. It’s a bit out of the scope

of this book to discuss CSS in any length, but suffice it to say that CSS files con-

tain formatting directives based on HTML tags (or you can define CSS classes,

which you can tag onto different parts of an HTML page to define its formatting).

DropBooksDropBooks

354 Part VI: Configuring and Reporting Via PowerShell

Figure 25-4:
HTML

file using
ConvertTo-
HTML with
some addi-

tional HTML
code.

Here’s a simple CSS file that I put together to change the font, size, and

color of the column headers (TH tags) and cells (TD tags). The code sets the

column header to use a blue Arial 14-point font and each cell to use a green

Arial 10-point font:

TH
{
 font-family: Arial;
 font-size: 14pt;
 color: Blue;
}
TD
{
 font-family: Arial;
 font-size: 10pt;
 color: Green;
}

You save this code as a file with a .css file extension and then tell

ConvertTo-HTML to add the appropriate HTML tags in the HTML output to

reference this CSS file by using the -CssURI parameter, as I’ve done here:

$title = “Service Status”
$heading = “<CENTER><H2>Service Status</H2></CENTER>”
$footer = “<P><CENTER>Generated on : “ + (Get-Date) + “</CENTER>”

Get-Service | Select-Object Name,DisplayName,Status | ConvertTo-Html -Title
$title -PreContent $heading -PostContent $footer –CssUri
“serviceformat.css” | Out-File services.html

DropBooksDropBooks

355 Chapter 25: Making Reporting Easy

If you reload the services.html file, you’ll see that the font style, size, and

color have changed, because the file pulls the formatting information from

serviceformat.css (see Figure 25-5).

Figure 25-5:
HTML file

generated
by

ConvertTo-
Html that
uses CSS

for
formatting.

Now that the report is using the CSS file for its formatting, if you want to

change a color or font size, you simply have to change the value in the CSS

file, save that file, and reload the HTML page.

 You can use CSS files to standardize the look and feel of your HTML reports by

defining the formatting in a single CSS file and then having all the reports refer-

ence that file. Later, if you decide to change a color or font size, all your reports

automatically use the new values; you don’t have to regenerate them as you

would if you had assigned those values statically.

Using Third-Party Reporting Tools
Right out of the box, Windows PowerShell offers a few useful ways for you to

generate simple reports. Unfortunately, management almost always wants

reports sliced and diced in many ways, and in those cases, you need some-

thing that can be more flexible. One method is to use the export capabilities

of Windows PowerShell to put the data in an intermediate format, such as

CSV or XML, that can be consumed by other products. Another way is to use

ADO.NET to upload the data to a Microsoft SQL database, where you can use

DropBooksDropBooks

356 Part VI: Configuring and Reporting Via PowerShell

powerful SQL reporting tools to your advantage. You can also use COM to

create an instance of Microsoft Excel, manipulate the worksheets directly,

and use Excel functions and graphing capabilities.

Finally, you can use extensions to add functionality to Windows PowerShell’s

out-of-the-box capabilities. One of the most mature and popular extensions

is PowerGadgets (created by SoftwareFX), which lets you create all kinds

of fancy charts, gauges, and even maps that you can control directly from

Windows PowerShell. This product is definitely worth looking at if you’re

interested in more visual reporting.

DropBooksDropBooks

Part VII
The Par t of Tens

DropBooksDropBooks

In this part . . .

What would a good For Dummies book be without a

good Part of Tens? After all, it takes weeks of per-

spiration to weed through mountains of information to

bring you these lists of things you absolutely need to

know. Find out in Chapter 26 what the top ten Cmdlets are

and in Chapter 27, you see the top ten mistakes to avoid.

It’s okay — I know you’re going to flip to the end of this

book to take a sneak peek, so go ahead.

DropBooksDropBooks

Chapter 26

The Ten Most Important Cmdlets
In This Chapter
▶ Using Get-Help to get help

▶ Getting familiar with your objects using Get-Member

▶ Using Set-Location to navigate

▶ Reading text files with Get-Content

▶ Writing to a file by using Out-File

▶ Leveraging WMI by using Get-WMIObject

▶ Using New-Object to create new objects

▶ Getting picky with Select-Object

▶ Going through collections with Foreach-Object

▶ Using Where-Object to control the pipeline

Windows PowerShell 2 contains several hundred Cmdlets. All of them

are important in one way or the other, so it’s hard to pick just ten of

them that you’ll need the most. I base this chapter on the Cmdlets I feel are

the most important based on their utility.

Getting Help with Get-Help
In a command line–driven environment, you don’t get the luxury of being

able to simply click menus and buttons or to go through dialog boxes in the

hope of finding the option or setting you need to do whatever it is you want

to do. Instead, you must know not only the command you want to run, but

also what parameters it needs and all the other information related to the

command.

The Get-Help Cmdlet is your best friend because it helps you find out all the

information you need about any particular Cmdlet. It makes command help

available at your fingertips any time. You don’t need to go online or open

any reference help files. Get-Help gets you minimal or detailed information

DropBooksDropBooks

360 Part VII: The Part of Tens

on Cmdlets — and, more important, shows you examples of how to run them

because often, the parameters start to make sense only after you see how

they’re used.

 I think it’s worth mentioning that a supporting-role award should be given to

Get-Command, which is a useful Cmdlet for getting a list of available com-

mands and some basic information about them.

Getting to Know Your Objects
with Get-Member

When you want to find out which properties and methods are available for

any given object, Get-Member is the Cmdlet to turn to. Unlike other Cmdlets

that return or process the value of an object they receive through the pipeline,

Get-Member goes straight to the object’s structure to give you insider infor-

mation about what makes that object tick. You also have the option to limit

the kind of members that are displayed. If you’re interested in the methods

but not the properties of objects returned by the Get-Process Cmdlet, for

example, you can run

Get-Process | Get-Member –membertype Method

For each kind of object that it encounters in the pipeline, Get-Member displays

the members of that object only once. Whether the command that precedes

it in the pipeline returns one or many objects (just as Get-Process returns

any number of process objects), Get-Member displays the members for a

process object only once, so you don’t have to worry that the Cmdlet will

spit out the same information many times for the same object type.

Navigating with Set-Location
You’ve always been able to move around the file system through a command

shell, but Windows PowerShell also exposes the Windows registry, variables,

environment variables, and even certificates as PowerShell drives that you can

navigate just as you would any logical drive. The Cmdlet that lets you move

around this virtual drive structure is Set-Location. Typically, this Cmdlet is

used with a single parameter: the location that you want the current location

to be within your Windows PowerShell window. Set-Location is aliased as

CD, because it acts the same functionally as the old Change Directory com-

mand in the traditional Windows command prompt.

DropBooksDropBooks

361 Chapter 26: The Ten Most Important Cmdlets

Reading Text Files with Get-Content
Although Windows PowerShell can consume all kinds of data, thanks to

its ability to use .NET classes as well as Component Object Model (COM)

objects, simple, plain text files are still the most commonly processed data

sources used in scripts. Get-Content makes working with text files extremely

easy, because it automatically handles opening the file for reading and pulling

in the file contents. Because the file data is automatically converted to a collec-

tion of strings, with each line being represented as its own string in the

collection, going through each line of a file is effortless.

Most of the time, you’ll see Get-Content being used with a single parameter,

which is the name of the file to read. It’s easy to assume that this Cmdlet is

rather simplistic, but if you look at what Get-Content is capable of (by using

the oh-so-fabulous Get-Help Cmdlet, which I cover earlier in this chapter),

you’ll see that this Cmdlet is capable of doing more than just reading in all the

contents of a file. It has parameters to specify the encoding of the file so that

it’s read correctly. You can specify how many lines are read at a time so that if

you’re processing a file containing thousands of lines, you don’t have to wait

until the very end before the next command in the pipeline can start using it.

You can even configure the maximum number of lines to read.

Writing to a File with Out-File
If you can read a file, you certainly want to be able to write to a file. Windows

PowerShell supports the redirection operators (> and >>) that have always

been available in the Windows command shell to write or append to a file.

Out-File implements that functionality but adds to it much more flexibility.

Yes, you can use this Cmdlet to write to and append to a file, just as you use

the standard redirection operators, but you can also specify the encoding

(such as Unicode and ASCII) or even force writing to a file that has its read-

only attribute set.

Out-File can also protect a file from accidental overwrites by aborting

the write if the output file already exists, and it has an option to prompt for

confirmation before proceeding with the operation. You can also restrict the

maximum number of characters in each line of text in the output file, if you

need that restriction.

 It’s important to note that if you use this functionality, any text that exceeds the

number of characters you specify gets truncated and is not written to the file.

DropBooksDropBooks

362 Part VII: The Part of Tens

Leveraging WMI with Get-WMIObject
Windows PowerShell does a great job of including many Cmdlets for doing

almost anything you want on your computer, but those Cmdlets don’t do

everything. For those things you can’t do with the native Cmdlets, you always

have Windows Management Instrumentation (WMI) to lean on, and harnessing

that power is really as simple as running Get-WMIObject. If you read this whole

book (okay, maybe just flip through the pages), you see that I often use Get-
WMIObject to accomplish many real-world Windows management tasks. It’s

really that flexible, and the best part is that if you already have a collection

of scripts that perform various Windows administrative tasks, you’re most

likely using WMI already, so migrating its functionality is very easy.

Minimally, you run Get-WMIObject and specify the WMI class you want

to connect to. If the WMI class can have many instances (such as Windows

services or printers), and you want to grab only particular instances, you

can provide filters so that only the ones you’re interested in are returned.

WMIObject is a very unassuming little Cmdlet, but it’s worth its digital

weight in gold.

Creating New Objects with New-Object
The Microsoft .NET Framework contains a lot of native classes for working

with many aspects of Windows, but you still have to use COM to control

some things. You use the New-Object Cmdlet to create instances of both

.NET and COM objects. To create an instance of a COM object, you simply

run New-Object with the -comobject switch and give it the name of the

COM object you want to instantiate. So to create an instance of a Microsoft

Excel COM object, you run

$objXL = New-Object –comobject “Excel.Application”

I also demonstrate in Chapter 25 how you can also use New-Object to create

instances of .NET objects like PSObject. The PSObject .NET class is a spe-

cial one for Windows PowerShell because it gives you the flexibility to tailor

it for your own needs by adding properties of your own.

Getting Picky with Select-Object
You use Select-Object whenever you need to be selective about the data

you want to obtain from a given object. You can use this Cmdlet to select

specific properties of the object, specific objects from an array, and even

DropBooksDropBooks

363 Chapter 26: The Ten Most Important Cmdlets

the first N number of array elements from either the beginning or the end

of the array. Usually, you use this Cmdlet as part of a command pipeline in

which you filter out specific properties or array elements. Select-Object

includes switches that let you

 ✓ Exclude a property from being selected.

 ✓ Expand a property (if the property can be expanded). If the property is

really an object, for example, expanding the property displays the

properties of that object as well.

 ✓ Select the first and last N number of objects in an array.

 ✓ Select the value of the object in a specific index of an array.

 ✓ Depending on whether the First or Last properties have been specified,

skip N number of items from the beginning or the end of the array.

 ✓ Select unique elements in the array.

Going Through Collections
with Foreach-Object

When you want to loop through objects in a collection and run some Windows

PowerShell code for each object from a pipeline, you use the Foreach-
Object Cmdlet and reference each object by using the $_ special variable.

It may seem redundant to have a Foreach-Object Cmdlet and a foreach

statement that essentially do the same thing. The most noticeable difference

is that you use Foreach-Object when you want to act on objects in a pipe-

line. If you want to display all directories in C:\windows, for example, you

can run

Get-ChildItem C:\Windows | Foreach-Object {if ($_.Mode.StartsWith(“d”)) { Write-
Host ($_.Name + “ is a directory”)}}

The Foreach-Object Cmdlet also has additional parameters that let you run

a script block before and after processing all the objects. These parameters

can be useful if you want to add header and footer information to the display.

 Under the surface, Foreach-Object isn’t as efficient as the foreach state-

ment, due to the way that the code eventually gets compiled and converted

behind the scenes. This difference may not be significant when you’re working

with just a few objects, but if you run Foreach-Object against thousands of

objects, the time difference becomes noticeable.

DropBooksDropBooks

364 Part VII: The Part of Tens

Controlling the Pipeline
with Where-Object

Select-Object lets you pick which properties or array elements should be

passed through the pipeline, and Foreach-Object lets you loop through

elements in a collection, but Where-Object is the gatekeeper that determines

which objects get to go through. Unlike Select-Object, which is designed to

handle properties and arrays in a relatively simple fashion, Where-Object is

designed to let you include a script block to describe what condition must be

true for an object to be included in the next step of the pipeline.

The script block, which acts like a pipeline filter, inspects each object that

it receives by running it through the code block and then allows it to pass

through only if the resulting value is true. If you want to get a list of services

that have their status property set to Running, you can run this code:

Get-Service | Where-Object {$_.Status –eq “Running”}

Just as you do with Foreach-Object, you use the $_ special variable to

reference the current object being inspected. You can put whatever you want

in Where-Object. The only requirement is that the script block must return

$true or $false.

DropBooksDropBooks

Chapter 27

Ten Common PowerShell
Mistakes

In This Chapter
▶ Not allowing scripts to execute

▶ Improperly using commas to separate parameters when calling a function

▶ Not defining functions before using them

▶ Forgetting that pipelines pass objects and not just strings

▶ Not casting variables as a string

▶ Making incorrect comparisons

▶ Expending the pipeline to far

▶ Not taking variable scope in account

▶ Debugging without the debugger

▶ Forgetting to use available .NET classes

Everyone makes mistakes! There’s no shame in that fact, especially when

you’re trying to get your arms around a new scripting language. In this

chapter, I talk about some typical mistakes that new Windows PowerShell

users make and how you can avoid them.

Forgetting to Change
the Execution Policy

The default installation security of Windows PowerShell is one of the first

things that newcomers to the language run into when they try to play around

with Windows PowerShell on their own. You go online, find a few commands

that you like, and try them; they work great. Then you find someone who

wrote a script that does exactly what you want. You’ve read enough to know

that the script should be saved with a .ps1 file extension, and when you try

DropBooksDropBooks

366 Part VII: The Part of Tens

to run it, you inevitably run into the exception that prevents anyone from

running scripts due to the execution policy.

If you intend to run Windows PowerShell scripts, you must either digitally

sign your scripts (as I discuss in Chapter 21) or not require local scripts to be

signed by setting the execution policy to RemoteSigned by using the Set-
ExecutionPolicy Cmdlet like this:

Set-ExecutionPolicy RemoteSigned

Using Commas to Separate Parameters
When Calling a Function

The way that functions are used in Windows PowerShell often confuses users

who have used other scripting languages. Consider this VBScript code snip-

pet, which defines a function that takes two parameters and runs it:

call userinfo(“Abraham Lincoln”,200)

Function userinfo(name, age)
 WScript.Echo “Name: “ & name
 WScript.Echo “Age : “ & age
End Function

In VBScript, as in most other programming and scripting languages, when you

call a function with more than one parameter, you use commas to separate the

parameters. The preceding code snippet correctly outputs the following:

Name: Abraham Lincoln
Age : 200

If you convert that function to Windows PowerShell, it looks like this:

function userinfo([string]$name,[int]$age)
{
 Write-Host “Name: $name”
 Write-Host “Age : $age”
}

Logically, you would assume that to run this function in PowerShell, you can

do this:

userinfo(“Abraham Lincoln”,200)

DropBooksDropBooks

367 Chapter 27: Ten Common PowerShell Mistakes

The problem is that when you run this code, the output looks like this

instead:

Name: Abraham Lincoln 200
Age :

Oddly enough, the age somehow got included in the name, so Age is blank. In

VBScript, when you call a subroutine (a function that doesn’t return a value),

you don’t use parentheses. You might try this code to see whether it fixes the

problem:

userinfo “Abraham Lincoln”,200

Strangely, even this code returns the same output as the attempt with paren-

theses. The problem is that the comma in Windows PowerShell is used to

create a literal array. Instead of calling userinfo and giving it two param-

eters, “Abraham Lincoln”,200 is actually being treated as a single array

object that is converted to a string and passed in as the first and only param-

eter of the function. The correct way to call a function with more than one

parameter is to use a space, as follows:

userinfo “Abraham Lincoln” 200

Now you get the output you expect!

 This aspect of Windows PowerShell has caught many people off guard. As long

as you use spaces between parameter values instead of commas, you won’t

fall victim to this very common mistake.

Defining Functions After You Use Them
Other scripting languages don’t care where in the script file the functions

are defined, but another peculiarity of Windows PowerShell is that you must

always define a function before you can use it. Windows PowerShell scripts

are interpreted as they are executed rather than being compiled at run time

before being executed. In simple terms, this requirement means that the fol-

lowing script works:

function hello([string]$name)
{
 Write-Host “Hello $name”
}

hello “Steve”

DropBooksDropBooks

368 Part VII: The Part of Tens

This next script doesn’t work, however, because Windows PowerShell

doesn’t know what hello means until later in the script:

hello “Steve”

function hello([string]$name)
{
 Write-Host “Hello $name”
}

Treating Pipeline Data as Strings
In almost all the command line–driven shell environments that support pipe-

lines that pass the output of one command to the input of another, the data

that goes between pipelines is just pure text. Subsequent commands in the

pipeline must parse the output text of the preceding command to extract the

data they need. In stark contrast, Windows PowerShell passes objects from

one stage of the pipeline to another, which requires a very different mindset

when you’re stringing commands together. Rather than thinking of string pat-

terns and relying heavily on things like regular expressions, you have to think

in terms of collections, objects, and properties.

Here’s a good example of how differently Windows PowerShell can behave.

This command pipeline gets a list of files and folders in the root of the C:

drive by using the Get-ChildItem Cmdlet and then formats it as a table

with the Name followed by the last write time:

Get-ChildItem C:\ | Format-Table –property Name,LastWriteTime

If you want to combine this output with a string and then display it, you

might try something like this:

“Some random text: “ + (Get-ChildItem C:\ | Format-Table –property
Name,LastWriteTime)

Unfortunately, this code doesn’t yield the desired results. Instead, the output

you get looks like this:

Some random text: Microsoft.PowerShell.Commands.Internal.Format.FormatStartData
Microsoft.PowerShell.Commands.Internal.

Format.GroupStartData Microsoft.PowerShell.Commands.Internal.Format.
FormatEntryData Microsoft.PowerShell.Commands.Inter

nal.Format.FormatEntryData Microsoft.PowerShell.Commands.Internal.Format.
FormatEntryData Microsoft.PowerShell.Commands.

Internal.Format.FormatEntryData Microsoft.PowerShell.Commands.Internal.Format.
FormatEntryData Microsoft.PowerShell.Comm

ands.Internal.Format.FormatEntryData Microsoft.PowerShell.Commands.Internal.
Format.FormatEntryData Microsoft.PowerShell

DropBooksDropBooks

369 Chapter 27: Ten Common PowerShell Mistakes

.Commands.Internal.Format.FormatEntryData Microsoft.PowerShell.Commands.
Internal.Format.FormatEntryData Microsoft.Power

Shell.Commands.Internal.Format.FormatEntryData

The problem is that you’re combining some text with a collection of format-

ted objects, so the string you specify gets displayed by having the ToString

method for each object called. For a row in Format-Table, the ToString

method simply displays Microsoft.PowerShell.Commands.Internal.
Format.FormatEntryData. To get the desired output, you have to convert

that formatted table to a string, just as you see it onscreen. To accomplish

this task, you use the Out-String Cmdlet. This version yields the desired

results:

“Some random text: “ + (Get-ChildItem C:\ | Format-Table –property
Name,LastWriteTime | Out-String)

If you want to combine formatted text with other text, make sure that you use

Out-String to do the correct conversion for you.

Forgetting to Cast Variables as a String
It’s a bit funny that I keep talking about Windows PowerShell as being very

object-oriented but keep going back to strings. The reason is that when objects

are finally displayed, they have to be converted to strings to be humanly

readable. One very common mistake has to do with type conversion. When

a string and another data type are combined with the plus (+) operator,

the other data type is automatically converted to a string via the object’s

ToString() method. Code like this works automatically:

$version = 2
$shell = “Windows PowerShell”
$outputstring = $shell + “ “ + $version
Write-Host $outstring

The output, of course, is Windows PowerShell 2. The implicit type conver-

sion works as long as the first data type is a string; otherwise, the conversion

will fail. If you reverse $version and $shell, as follows, you end up with an

exception:

$version = 2
$shell = “Windows PowerShell”
$outputstring = $version + “ “ + $shell
Write-Host $outstring

DropBooksDropBooks

370 Part VII: The Part of Tens

This exception happens because Windows PowerShell sees that the first vari-

able is an Integer and therefore tries to convert the other values it sees

being added to it as Integers. Because the string “Windows PowerShell”

is obviously not an integer, it can’t be converted, causing the exception to be

thrown.

 If, for some reason, the string contains only numeric values that could be con-

verted to Integers, PowerShell will attempt make that conversion for you.

To fix everything and make sure that what you’re combining is treated as a

string, you just have to make sure that the first value is a string, and you can

do by explicitly casting that value to a string by using the [string] prefix.

This version doesn’t throw any errors:

 $outputstring = [string]$version + “ “ + $shell

Using Incorrect Comparison Operators
Comparison operators represent another trap for those who have some expe-

rience writing code in other scripting or programming languages. Almost all

scripting and programming languages use common symbols for comparing

values. Table 27-1 shows some of them.

Table 27-1 Typical Comparison Operators
Symbol Meaning

= or == Equal

<> or != Not equal

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

These symbols are generally derived from math, so they’re well recognized.

It’s no surprise that I often find new Windows PowerShell users getting stuck

on a script because they don’t realize that they’ve used incorrect comparison

operators. The following example is not the correct way to check whether $x

is greater than $y:

DropBooksDropBooks

371 Chapter 27: Ten Common PowerShell Mistakes

$x = 5
$y = 2
if($x > $y) {
 Write-Host “$x is greater than $y”
}

 The > symbol is the redirection operator in Windows PowerShell, just as it is in

the Windows command prompt. The preceding code will run without any error,

but it won’t do what you expect. Instead, the result is that nothing gets displayed

onscreen. If you check the current directory, you’ll find a new file called 2. The

content of 2 is the number 5, because you essentially told Windows PowerShell

to output the value of $x to a file called 2 (the value of $y).

In Windows PowerShell, you have to make sure that you use the operators in

Table 27-2 when you compare values.

Table 27-2 Windows PowerShell Comparison Operators
Operator Meaning

-eq Equal

-ne Not equal

-ine Not equal; not case sensitive (new in Windows
PowerShell 2)

-lt Less than

-le Less than or equal

-gt Greater than

-ge Greater than or equal

When you use the correct comparison operator, the following code snippet

should work properly:

$x = 5
$y = 2
if($x -gt $y) {
 Write-Host “$x is greater than $y”
}

DropBooksDropBooks

372 Part VII: The Part of Tens

Trying to Do Too Much in One Pipeline
Windows PowerShell command pipelines are great because you can keep

stringing commands together, with each command processing the output

of the preceding command. This technique is very powerful because techni-

cally, you can put an unlimited number of commands in a pipeline. Often,

you’ll find that scripts that take several dozen lines in other scripting lan-

guages can be done in a single line in Windows PowerShell. The problem is

that some new Windows PowerShell users get carried away and want to do

all their scripts as one giant pipeline.

There’s nothing technically wrong with a very long pipeline, but I suggest

that when you find yourself putting more than four commands in a pipeline

(especially ones in which you’re passing in a long, complex series of param-

eters), you should start thinking about breaking the pipeline into more

manageable segments and storing intermediate values in variables instead.

Functionally, this is equivalent to a large pipeline of commands but has the

added advantage of being easier to debug and modify if you decide to make a

change later.

Even if you know exactly how the pipeline you created works today with

the complex sequence of commands you’re running, if you look back at the

script a few months from now, the process may not be so obvious, and you’ll

undoubtedly waste time trying to figure out how your own script works.

Using smaller command segments makes commands easier to digest when

you read the script. Also, picking good variable names can be a self-documenting

practice if you’re too lazy to write comments in your scripts.

Forgetting About Variable Scope
Windows PowerShell users who don’t have any programming knowledge

often forget about scope. I’m not talking about the kind of scope that’s sup-

posed to make your breath minty fresh, but scope in terms of where variables

are visible. It’s important to understand that any variable you create has a

certain scope, depending on where that variable was defined. This behavior

is designed to make it possible to use the same variable names in the shell,

script, and function, but be unique and have the variable have its own value

independent of the other variables with the same name. The best way to

understand scope is to see it in action in a simple script:

function test()
{
 Write-Host “In function test()...”
 $a = 2
 Write-Host “Value of a is: $a”

DropBooksDropBooks

373 Chapter 27: Ten Common PowerShell Mistakes

 Write-Host “Leaving function test()...”
}

$a = 1
Write-Host “Value of a is: $a”
test
Write-Host “Value of a is: $a”

The resulting output is

Value of a is: 1
In function test()...
Value of a is: 2
Leaving function test()...
Value of a is: 1

Notice that the value of $a is set to a different value in the function but some-

how reverts to its original value after the function is called. There’s no magic

going on here. The $a defined within the script is actually different from the

$a defined in the test function. The first $a defined in the actual script has

script scope level, meaning that it’s visible from anywhere inside the script. If

you leave out the $a = 2 line, the test function simply outputs the value of

$a from the script itself, which is 1.

If you define $a within the function as I do, however, you actually create a

new $a variable within the function that is visible only from within that func-

tion. You can do whatever you want with that variable, but as soon as the

function is done, that variable no longer exists, and any value you assigned to

it within the function is forgotten.

In general, the rule is that variables can be “seen” at any level below the

current level, but not vice versa. If you define a variable at the Windows

PowerShell prompt, it’s visible in any script you run and any function that

may be in those scripts. If you define a variable in a function, it isn’t visible

outside the function. Similarly, variables defined in a script aren’t visible

when the script finishes running.

Not Using the Debugger
Windows PowerShell 2 includes many new debugging capabilities that make

it easier to find bugs in your scripts. If your script is only a couple of lines

long (which most scripts tend to be), it’s probably easy enough for you to

find the source of a bug just by double-checking your code. When you start

writing really complicated scripts that are dozens of lines long and contain

multiple functions, bugs caused by syntax errors or even variable scope can

easily creep in. Use the debugger effectively, and you’ll save yourself a lot of

headaches later when you’re trying to hunt down elusive bugs.

DropBooksDropBooks

374 Part VII: The Part of Tens

Not Using .NET Classes When Available
This error is probably most common for Windows PowerShell users who

have come to rely on using COM objects to interact with the operating

system or applications. COM is great in that it’s widely supported, and

plenty of examples are available to show you how to accomplish almost any

task with COM objects. The problem is that interacting with COM through

Windows PowerShell is generally a bit slower than using native .NET objects,

especially if you compare the speed of using COM in other scripting lan-

guages. So whenever possible, before you jump into using COM, do your

research; see whether there’s another way to do the same thing with .NET

classes instead. Your code will run much faster and be better poised to be

supportable in the future as in many cases where .NET classes have been

made available, they’re often full of new features that make working with

them easier.

DropBooksDropBooks

Index
• Symbols •
& (ampersand), in LDAP fi lters, 279–280
<> (angle brackets), enclosing required items

in syntax, 54
<# #> (angle bracket, pound sign), enclosing

AutoHelp text, 199
* (asterisk)

in LDAP fi lters, 278
multiplying numbers, 143
in regular expressions, 133–134

*= (asterisk, equal), multiplying and assigning
numbers, 143

@ (at sign)
preceding array defi nition, 46, 149
preceding hash table defi nition, 155
preceding Here-Strings, 119–120

\ (backslash), in regular expressions, 129
` (backtick), continuation character, 44
^ (caret), regular expression, 131, 134–135
{} (curly braces)

enclosing expressions to debug, 69–70
enclosing functions, 188
enclosing variable names, 62

$ (dollar sign)
preceding variables, 62, 71
in regular expressions, 135

$? variable, 72
$$ variable, 72
$^ variable, 72
$_ variable, 72
. (dot operator)

in regular expressions, 129–130
between variable and method/property, 75

“” (double quotes), enclosing literal strings, 119
! (exclamation point), in LDAP fi lters, 278–279
/ (forward slash), dividing numbers, 143–144
/= (forward slash, equal), dividing and

assigning numbers, 144
- (hyphen), preceding parameters, 54
- (minus sign), subtracting numbers, 142
-- (minus sign, double), decrementing

numbers, 142
-= (minus sign, equal), subtracting and

assigning numbers, 142
% (modulus operator), 144

| (pipe character)
in LDAP fi lters, 279–280
for piping, 51
in regular expressions, 135

+ (plus sign)
adding numbers, 140–142
combining strings, 121
in regular expressions, 132–133

++ (plus sign, double), incrementing
numbers, 141

+= (plus sign, equal), adding and assigning
numbers, 140

(pound sign), preceding comments, 42
? (question mark)

debugger command, 241
in regular expressions, 132

> (redirection operator), 164
[] (square brackets)

enclosing array indexes, 149, 152–153
enclosing casted data types, 68–69, 121
enclosing character sets in regular

expressions, 130–131
enclosing data types in variable defi nition, 66
enclosing optional items in syntax, 54
enclosing parameter properties, 203

• A •
Active Directory (AD)

connecting to, 274–275
defi nition of, 273–274
fi ltering queries of, 277–282
modifying object attributes, 283–285
obtaining distinguishedName for users,

282–283
psbase object, accessing, 285–286
querying, 275–277
updating group membership, 284–285

Active Directory For Dummies (Clines,
Loughry), 274

Active Directory Services Interface (ADSI), 45,
274–275

ActiveX Data Objects (ADO), 312–316
AD. See Active Directory (AD)
Add() method, for dates, 180–181
add() method, for hash tables, 157
Add-Content Cmdlet, 166

DropBooksDropBooks

376 Windows PowerShell 2 For Dummies

addition of numbers, 140–142
Add-Member Cmdlet, 350
AddPrinterConnection() method,

Win32_Printer class, 341
ADO (ActiveX Data Objects), 312–316
ADSI (Active Directory Services Interface),

45, 274–275
advanced functions

attributes for, 199–200
AutoHelp text in, 199
defi nition of, 197–198
dot-sourcing, 205
libraries of, 207
methods for, 204
parameters for, 200–203
in profi le script, 205
running, 204–206
structure of, 198–199
as wrapper around a Cmdlet, 207

alias drive, 32–33
Alias property, for parameters, 200
aliases, 30–34
AllowEmptyCollection property, for

parameters, 202
AllowEmptyString property, for

parameters, 202
AllowNull property, for parameters, 202
AllSigned execution policy, 289
ampersand (&), in LDAP fi lters, 279–280
AND operator, 77
angle bracket, right (>), redirection

operator, 164
angle brackets (<>), enclosing required items

in syntax, 54
Anonymous impersonation level, 111
-append switch, Out-File Cmdlet, 165
AppendChild() method, XML object,

168–169
application fi rewall policies, 299–300
$Args variable, 72
arguments (parameters) for functions

for advanced functions, 200–203
$Args variable containing, 72
for functions, 189–191

arguments on command line, 41–42
array data type, 67
arrays

accessing elements of, 149–151
adding elements to, 151
creating, 46, 148–149
defi nition of, 148
examples using, 153–154
length of, determining, 150
looping through, 150–151, 363

looping through hash tables using, 158
multidimensional, 152–153
populating in a loop, 46

-as operator, 69
asterisk (*)

in LDAP fi lters, 278
multiplying numbers, 143
in regular expressions, 133–134

asterisk, equal (*=), multiplying and assigning
numbers, 143

at sign (@)
preceding array defi nition, 46, 149
preceding hash table defi nition, 155
preceding Here-Strings, 119–120

authentication levels, WMI, 109–111
AuthorizedApplication property,

HNetCfg.FwMgr object, 326, 328–329
auto-complete for commands (tab

expansion), 34–35
AutoHelp text, 199
automatic variables, 71–74

• B •
background color for command shell,

changing, 22
background jobs

creating, 210–211
enabling WinRM for, 210
retrieving results from, 211–212
running remotely, 219–220
stopping before fi nished, 214–215
terminating when fi nished, 214
waiting for, 213

BackgroundColor property, $Host.
UI.RawUI object, 22

backslash (\), in regular expressions, 129
backtick (`), continuation character, 44
basic data types, 63
batch fi les, 302–306
Begin() method, for advanced functions,

204, 206
-body switch, ConvertTo-HTML Cmdlet, 173
books and publications

Active Directory For Dummies (Clines,
Loughry), 274

SQL For Dummies (Taylor), 107
boolean data type, 63, 67
Boolean operators, 77–79
braces ({})

enclosing expressions to debug, 69–70
enclosing functions, 188
enclosing variable names, 62

DropBooksDropBooks

377377 Index

brackets ([])
enclosing array indexes, 149, 152–153
enclosing casted data types, 68–69, 121
enclosing character sets in regular

expressions, 130–131
enclosing data types, 66
enclosing optional items in syntax, 54
enclosing parameter properties, 203

branching statements, 80–83
breakpoints

disabling, 242
enabling, 242–243
listing, 241–242
removing, 243
setting, 238–240

buffer size for command shell, 22–23
BufferSize property, $Host.UI.RawUI

object, 23
bugs (errors). See also exceptions

caused by execution policy, 365–366
caused by incorrect comparison operators,

370–371
caused by incorrect function calls, 366–367
caused by incorrect function placement,

367–368
caused by incorrect logic, 232–233
caused by infi nite loops, 88
caused by misuse of variable scope,

372–373
caused by not casting variables as strings,

369–370
caused by pipeline data treated as strings,

368–369
caused by pipelines that are too long, 372
caused by system errors, 233
caused by unexpected input, 232
debugging, 233–235, 237–243
$Error variable containing, 72
preventing, 235–237

byte data type, 63, 67, 138

• C •
c (Continue) command, in debugger, 241
c (prefi xing case-sensitive comparison

operators), 80
Call authentication level, 111
camel case notation, for variable names, 62
caret (^), in regular expressions, 131, 134–135
Cascading Style Sheets (CSS), 353–355
case of strings, changing, 127
case-sensitive comparison operators, 80

casting (changing data types), 67–70, 121,
145–146, 369–370

CERT: drive, 294–295
certifi cate. See code-signing certifi cate
certifi cate store, querying, 294–295
char data type, 63, 67
character sets, in regular expressions,

130–131
ChassisTypes property, Win32_

SystemEnclosure class, 336–338
child elements, XML, 167
CIM (Common Information Model), 100
CIM Object Manager (CIMOM), 101
CIMOM Repository, 101
classes, WMI. See objects, WMI
Clines, Steve (Active Directory

For Dummies), 274
CmdletBinding attribute, 199–200
Cmdlets. See also commands

creating. See advanced functions
defi nition of, 49–50
displaying list of, 51–52
getting help on, 52–55
naming conventions for, 50–51
passing output to another Cmdlet. See

pipelines
running in background, 210–215
running remotely, 215, 217–218
syntax for, interpreting, 54–55
wrapper around, with advanced

functions, 207
code-signing certifi cate

certifi cate store, querying, 294–295
defi nition of, 290
for profi le script, 26
requesting from Enterprise CA, 293–294
self-signed certifi cate, creating, 290–292
signing scripts, 295–297

collections. See arrays; hash tables
colors in command shell, changing, 22
COM objects, 307–310, 362
command line arguments, 41–42
Command pane, ISE, 19
Command property, Job object, 211
command shell for PSH

background color for, changing, 22
buffer size for, changing, 22–23
foreground color for, changing, 22
profi le script for, 24–27
starting, 16–17
window size for, changing, 22–23
window title for, changing, 24

DropBooksDropBooks

378 Windows PowerShell 2 For Dummies

commands. See also Cmdlets
aliases for. See aliases
current, determining information about, 73
multiple, entering before running, 27
stringing together. See pipelines
tab expansion for, 34–35

comments, 42
Common Information Model (CIM), 100
comparison operators, 79–80, 303–304,

370–371
-computername parameter, for Cmdlets, 215
computers, monitoring. See hardware,

monitoring
-Confirm switch, Out-File Cmdlet, 165
ConfirmImpact attribute, 200
Connect authentication level, 111
console fi le, name of, 72
$ConsoleFileName variable, 72
constants, 70–71
-contains operator, 80
continuation character (`), 44
Continue (c) command, in debugger, 241
conventions used in this book, 2–3, 7
ConvertFrom-StringData Cmdlet, 225, 228
ConvertTo-CSV Cmdlet, 350
ConvertTo-HTML Cmdlet, 171–174, 346,

352–353, 354
ConvertTo-XML Cmdlet, 350
Coordinated Universal Time (UTC), 182
Copy-Item Cmdlet, 161–162
CreateObject() method, converting to

PSH, 309–310
CSCRIPT Cmdlet, 60
CSS (Cascading Style Sheets), 353–355
CSV fi les, importing and exporting, 306,

349–350
culture, determining, 72, 73, 225, 226.

See also internationalization
$Culture variable, 225
curly braces ({})

enclosing expressions to debug, 69–70
enclosing functions, 188
enclosing variable names, 62

current directory
changing, 160
determining, 73, 160
not in search path, as security feature, 288
specifying for command, 41

CurrentProfile property, HNetCfg.
FwMgr object, 326

CurrentProfileType property, HNetCfg.
FwMgr object, 326

• D •
\d (regular expressions shortcut), 131
\D (regular expressions shortcut), 131
DATA section in scripts, 225, 226–229
data types

casting (changing), 67–70, 121, 145–146,
369–370

defi nition of, 62–63
explicitly defi ning, 65–67
implicitly defi ning, 64–65
integral, 138
list of, 63–64
nonintegral, 139
shortcuts (abbreviated names) for, 67

date and time
adding to, 180–181
creating, 178
current, determining, 175–176
DST (daylight saving time), 181–182
formatting, 176–178
subtracting, 179–180
time zones, 182–184

date data type, 63
daylight saving time (DST), 181–182
[DBG] : prompt, 239
debugging. See also errors

breakpoints for, 238–240, 241–243
commands for, 240–241
importance of using, 373
network connectivity, troubleshooting,

324–325
process of, 233–235
specifi c expressions, 69–70
stepping through code, 241

decimal data type, 63, 67, 139
decrementing numbers, 142
Default authentication level, 110
Default impersonation level, 111
DefaultIPGateway property, Win32_

NetworkAdapterConfiguration
class, 321, 323

DefaultParameterSet attribute, 199, 200
Delegate impersonation level, 112
Delete() method, Win32_Printer class, 342
DeleteSubKey() method, RegistryKey

class, 271–272
DeleteSubKeyTree() method,

RegistryKey class, 271
DeleteValue() method, RegistryKey

class, 271

DropBooksDropBooks

379379 Index

Description property, Win32_
NetworkAdapterConfiguration
class, 321

DetectedErrorState property, Win32_
Printer class, 342–343

DHCPEnabled property, Win32_
NetworkAdapterConfiguration
class, 321

DHCPLeaseExpires property, Win32_
NetworkAdapterConfiguration
class, 321

DHCPLeaseObtained property, Win32_
NetworkAdapterConfiguration
class, 321

DHCPServer property, Win32_
NetworkAdapterConfiguration
class, 321

directories
copying, 161–162
creating, 160
current directory, changing, 160
current directory, determining, 73, 160
current directory, not in search path, 288
current directory, specifying for command, 41
deleting, 161
moving, 162
renaming, 162

DirectoryEntry class, 275–277
DirectorySearcher class, 276–277
Disable-PSBreakpoint Cmdlet, 242
disconnected recordsets, 312–313
-displayhint switch, Get-Date Cmdlet, 176
distinguishedName (DN) property, 274,

282–283
division of numbers, 143–144
DMTF (Distributed Management

Task Force), 100
DNSDomain property, Win32_

NetworkAdapterConfiguration
class, 322

DNSDomainSuffixSearchOrder
property, Win32_
NetworkAdapterConfiguration
class, 322

DNSHostName property, Win32_
NetworkAdapterConfiguration
class, 322

DNSServerSearchOrder property, Win32_
NetworkAdapterConfiguration
class, 322

do until loop, 87
do while loop, 86–87

dollar sign ($)
preceding variables, 62, 71
in regular expressions, 135

dot operator (.)
in regular expressions, 129–130
between variable and method or property, 75

dot-sourcing functions, 197, 205
double data type, 63, 67, 139
double quotes (“”), enclosing literal strings, 119
double-clicking, PSH scripts not run by, 288
drive space, monitoring, 247–253
DriveInfo class, 250
DST (daylight saving time), 181–182

• E •
Echo command, converting to Windows

PowerShell, 302
echo response (ping), ICMP, 328
Edit Security permission, 103
else statement, 80–83, 224–225, 303–304
elseif statement, 81–83, 224–225
empty strings, 64, 118
Enable Account permission, 103
EnableDHCP() method, Win32_

NetworkAdapterConfiguration
class, 321, 325

EnableDNS() method, Win32_
NetworkAdapterConfiguration
class, 321

Enable-PSBreakpoint Cmdlet, 242–243
EnableStatic() method, Win32_

NetworkAdapterConfiguration
class, 321, 325

-encoding switch, Out-File Cmdlet, 165
End() method, for advanced functions,

204, 206
Enterprise CA, requesting certifi cate from,

293–294
Enter-PSSession Cmdlet, 216–217
environment variables, getting value of, 192
-eq (equal to) operator, 79, 80
$Error variable, 72
errors. See also exceptions

caused by execution policy, 365–366
caused by incorrect comparison operators,

370–371
caused by incorrect function calls, 366–367
caused by incorrect function placement,

367–368
caused by incorrect logic, 232–233
caused by infi nite loops, 88

DropBooksDropBooks

380 Windows PowerShell 2 For Dummies

errors (continued)

caused by misuse of variable scope,
372–373

caused by not casting variables as strings,
369–370

caused by pipeline data treated as strings,
368–369

caused by pipelines that are too long, 372
caused by system errors, 233
caused by unexpected input, 232
debugging, 233–235, 237–243
$Error variable containing, 72
preventing, 235–237

escape character (\), in regular
expressions, 129

event logs, 109, 257–259
Exception class, BC2
exceptions. See also errors

defi nition of, BC2–BC3
throwing, BC6–BC7
trapping, BC3–BC6

ExceptionsNotAllowed property,
HNetCfg.FwMgr object, 326

exclamation point (!), in LDAP fi lters, 278–279
Exclusive OR (XOR) operator, 78
Execute Methods permission, 103
execution policy

changing, 26–27, 290
default, 27
levels for, 289
problems caused by, 365–366
remote operation affected by, 221

$ExecutionContext variable, 72
exit code from program, determining, 73
Exit-PSSession Cmdlet, 217
Export-Alias Cmdlet, 33–34
Export-CliXML Cmdlet, 170, 350
Export-Csv Cmdlet, 350

• F •
$False variable, 72, 73–74
fi le system

CSV fi les, importing and exporting, 306,
349–350

directories. See directories
fi les, manipulating, 162
fi les, reading, 163–164, 361
fi les, writing, 164–166, 361

HTML fi les, writing, 171–174, 352–353
XML fi les. See XML fi les

FilesystemObject class, converting to
PSH, 311–312

fi lters, LDAP, 277–282
FirewallEnabled property, HNetCfg.

FwMgr object, 326, 327–328
folders (directories)

copying, 161–162
creating, 160
current directory, changing, 160
current directory, determining, 73, 160
current directory, not in search path, 288
current directory, specifying for command, 41
deleting, 161
moving, 162
renaming, 162

FOR command, converting to Windows
PowerShell, 304–306

for loop, 84–85
-force switch, Out-File Cmdlet, 165
foreach loop, 42, 85, 304–305
$ForEach variable, 72
Foreach-Object Cmdlet, 363
foreground color for command shell,

changing, 22
ForegroundColor property, $Host.

UI.RawUI object, 22
-format switch, Get-Date Cmdlet, 176–177
Format-Table Cmdlet, 46, 94–95, 346,

347–348
forward slash (/), dividing numbers, 143–144
forward slash, equal (/=), dividing and

assigning numbers, 144
Full Write permission, 103
function keyword, 188
functions

adding to ISE menu, 28–29
advanced functions. See advanced functions
defi ning, 188–189, 367–368
defi ning in global scope, 197
defi nition of, 187–188
dot-sourcing, 197
overlapping names in, 195–197
parameters for, 72, 189–191, 366–367
in profi le script, 197
return values for, 191–193
running, 189, 366–367
scope of variables in, 193–197, 372–373

FwMgr object, 297–298

DropBooksDropBooks

381381 Index

• G •
-ge (greater than or equal to) operator, 80
Get-ChildItem Cmdlet, 32, 42, 267, 311
Get-Cmdlet Cmdlet, 51–52
Get-Content Cmdlet, 163–164, 168,

311–312, 361
Get-Culture Cmdlet, 226
Get-Date Cmdlet

creating dates and times, 178
current date and time, determining, 175–176
formatting date and time, 176–178

GetDirectoryEntry() method,
DirectoryEntry class, 277

GetDrives() method, DriveInfo class, 250
Get-EventLog Cmdlet, 257–259
Get-ExecutionPolicy Cmdlet, 290
Get-Help Cmdlet, 52–55, 199, 359–360
Get-ItemProperty Cmdlet, 267
Get-Location Cmdlet, 160
Get-Member Cmdlet, 286, 360
GetObject() method, converting to PSH, 310
Get-Process Cmdlet, 94–95, 153–154
GetProfileByType() method, HNetCfg.

FwMgr object, 327
Get-PSBreakpoint Cmdlet, 241–242
Get-PSDrive Cmdlet, 264–265
Get-Service Cmdlet, 253–254
GetType() method, for variables, 66
Get-UICulture Cmdlet, 226
GetUTCOffset() method, TimeZone

class, 184
GetValue() method, RegistryKey

class, 266
Get-WMIObject Cmdlet, 103–105, 251–252,

335, 362
global scope

for functions, 197
for variables in functions, 193–195

globalization. See internationalization
globally open ports, 298, 329
GloballyOpenPorts property, HNetCfg.

FwMgr object, 327, 329
greater than (-gt) operator, 79
greater than or equal to (-ge) operator, 80
group membership, updating, 284–285
grouping data. See arrays; hash tables
-gt (greater than) operator, 79

• H •
h command, in debugger, 241
hardware, monitoring

default printer, setting, 342
inventory script, 333–336
printer queue, checking, 343–344
shared network printer, 341–342
status of hardware, checking, 340
status of printer, checking, 342–343
type of computer, determining, 336–339
USB drives and memory sticks, detecting, 339
with WMI, 332–340

hash tables
accessing elements of, 155–156
adding elements to, 157
creating, 155
defi nition of, 155, 157
looping through, 363
looping through, using arrays, 158
removing elements from, 157

HasMoreData property, Job object, 211
-head switch, ConvertTo-HTML Cmdlet, 173
help

on Cmdlets, 52–55, 359–360
in ISE, 27

HelpMessage property, for parameters, 201
Here-Strings, 119–120
hives, in Windows registry, 262
HKCU drive, 265
HKEY_CLASSES_ROOT hive, 262
HKEY_CURRENT_CONFIG hive, 262
HKEY_CURRENT_USER hive, 262, 264, 265
HKEY_LOCAL_MACHINE hive, 262, 265
HKEY_USERS hive, 262, 264
HKLM drive, 265
HNetCfg.FwMgr object, 297–298, 326–327
$Home variable, 72
host for WSH, setting, 60
$Host variable, 22, 72
$Host.UI.Raw object, 22–23
HTML fi les, writing, 171–174, 352–353
hyphen (-), preceding parameters in syntax, 54

• I •
i (prefi xing case-insensitive comparison

operators), 80
ICMP (Internet Control Message Protocol), 328

DropBooksDropBooks

382 Windows PowerShell 2 For Dummies

IcmpSettings property, HNetCfg.FwMgr
object, 327, 328

icons used in this book, 7
ID property, Job object, 211
Identify impersonation level, 112
if/else statement, 80–83, 224–225, 303–304
Impersonate impersonation level, 112
impersonation levels, WMI, 111–112
Import-Alias Cmdlet, 33–34
Import-CliXML Cmdlet, 170
Import-CSV Cmdlet, 306
Import-LocalizedData Cmdlet, 225,

227–229
incrementing numbers, 141
IndexOf() method, for strings, 125–126
infi nite loops, 88
input

getting from user, 38–39
unexpected, errors caused by, 232

$Input variable, 72
instance methods, WMI, 113
int data type, 67
integer data type, 63, 138
integral data types, 138
Integrated Shell Environment. See ISE
internationalization

defi nition of, 223
features for, 225
importance of, 224
sharing scripts, issues regarding, 229–230
using if/else statements, 224–225
using separation of data, 225, 226–229

Internet Control Message Protocol (ICMP), 328
interop assemblies, 309
Invoke-WMIMethod Cmdlet, 113
IPAddress property, Win32_

NetworkAdapterConfiguration
class, 322, 323

IPEnabled property, Win32_
NetworkAdapterConfiguration
class, 322, 323

IPSubnet property, Win32_
NetworkAdapterConfiguration
class, 322, 323

-is operator, 80
IsDaylightSavingTime() method, for

dates, 182
ISE (Integrated Shell Environment)

Command pane, 19
customizing console, 28
getting help in, 27

keyboard shortcuts, adding, 28–29
menu items, adding, 28–29
multiple commands, entering before

running, 27
Output pane, 19
partial scripts, running, 27
profi le script for, 25
Script/Editor pane, 19, 20
starting, 18, 27

IsMatch() method, RegEx object, 128
-isnot operator, 80

• J •
jobs, background

creating, 210–211
enabling WinRM for, 210
retrieving results from, 211–212
running remotely, 219–220
stopping before fi nished, 214–215
terminating when fi nished, 214
waiting for, 213

.js fi le extension, 59

• K •
keyboard shortcuts in ISE, 28–29

• L •
$LastExitCode variable, 73
LDAP (Lightweight Directory Access

Protocol)
connecting to Active Directory using, 274
fi lters for, 277–282

-le (less than or equal to) operator, 79
length property

for arrays, 150
for strings, 75

less than (-lt) operator, 79
less than or equal to (-le) operator, 79
Lightweight Directory Access Protocol.

See LDAP
-like operator, 80
line continuation character (`), 44
literal strings, 118–119
Location property, Job object, 211
logic, incorrect, 232–233
logical (Boolean) operators, 77–79

DropBooksDropBooks

383383 Index

long data type, 63, 67, 138
loops

for arrays, 150–151, 363
defi nition of, 83–84
do until loop, 87
do while loop, 86–87
foreach loop, 42, 85
for hash tables, 158, 363
infi nite loops, 88
for loop, 84–85
while loop, 86

Loughry, Marcia (Active Directory For
Dummies), 274

-lt (less than) operator, 79

• M •
MACAddress property, Win32_

NetworkAdapterConfiguration
class, 322

makecert.exe fi le, 290–292
managed objects, 100–101
Mandatory property, for parameters, 200
-match operator, 80, 136
mathematical operations

on dates, 179–181
on numbers, 139–144

MD (MKDIR) command, 160
memory sticks, detecting, 339
menus in ISE, 28–29
methods

for advanced functions, 204
of variables, using, 74–76
of WMI objects, invoking, 113

Microsoft Developer Network (MSDN), 106
minus sign (-), subtracting numbers, 142
minus sign, double (--), decrementing

numbers, 142
minus sign, equal (-=), subtracting and

assigning numbers, 142
MKDIR (MD) command, 160
Mode property, for items in folders, 43
modulus operator (%), 144
Monad, 12–13
Move-Item Cmdlet, 162
MSDN (Microsoft Developer Network), 106
MTU property, Win32_

NetworkAdapterConfiguration
class, 322

multidimensional arrays, 152–153

multimaster confi guration, 274
multiplication of numbers, 143
$MyInvocation variable, 73

• N •
Name property, Job object, 211
namespaces, 101–102, 106
$NestedPromptLevel variable, 73
.NET classes

Cmdlets as, 50
exceptions thrown by, BC3, BC6
using in PowerShell code, 250, 374

netsh (network shell), 320
network confi guration

with netsh, 320
TCP/IP settings, 322–325
with Win32_

NetworkAdapterConfiguration
class, 320–322

network shell (netsh), 320
New-Alias Cmdlet, 31
New-Item Cmdlet, 30–31, 268
New-ItemProperty Cmdlet, 268–269
New-Object Cmdlet, 309–310, 350, 362
New-PSSession Cmdlet, 219
Next() method, Random object, 145
-noClobber switch, Out-File Cmdlet, 165
nodes, XML, 167
-nomatch operator, 80
None authentication level, 110
nonintegral data types, 139
NOT operator, 78
-notcontains operator, 80
NotificationsDisabled property,

HNetCfg.FwMgr object, 327
-notlike operator, 80
-notmatch operator, 136
null strings, 64, 118
$NULL variable, 73, 74, 118
numbers

casting (changing data type of), 145–146
conversion of, automatic, 145
data types for, 137–139
mathematical operations on, 139–144
overfl ow problems with, 146
random, 145
rounding, 144–145

DropBooksDropBooks

384 Windows PowerShell 2 For Dummies

• O •
o (Step-Out) command, in debugger, 241
object data type, 63
objects

creating for report data, 350–352
saving to XML fi les, 169–171

objects, COM, 307–310, 362
objects, .NET. See .NET classes
objects, WMI

accessing, 103–105
deleting, 114
invoking methods of, 113
list of classes, 105–106
managed objects, 100–101
querying, 106–107
setting properties of, 114–115

OpenRemoteBaseKey() method,
RegistryKey class, 266, 269–270

OpenSubKey() method, RegistryKey
class, 266, 269–270

operating systems, 2
operators

comparison operators, 79–80, 303–304,
370–371

logical (Boolean) operators, 77–79
mathematical operators, 139–144, 179–181

OR operator, 78
OU (Organizational Unit), querying, 43–46
Out-Default Cmdlet, 93–94
Out-File Cmdlet, 164–165, 312, 361
Out-GridView Cmdlet, 346, 348–349
output, displaying, 38–39
Output pane, ISE, 19
overfl ow problems with numbers, 146

• P •
Packet authentication level, 111
Packet Integrity authentication level, 111
Packet Privacy authentication level, 111
param keyword, 190–191
parameters

for advanced functions, 200–203
$Args variable containing, 72
for functions, 189–191

ParameterSetName property, for
parameters, 201

Partial Write permission, 103
percent sign (%), modulus operator, 144

period (.), dot operator
in regular expressions, 129–130
between variable and method or property, 75

permissions, WMI, 103
persistent aliases, 33–34
persistent connection, 218–219
$PID variable, 73
ping (echo response), ICMP, 328
pipe character (|)

in LDAP fi lters, 279–280
for piping, 51
in regular expressions, 135

pipelines
current object in, determining, 72
defi nition of, 51, 90–91
fi ltering output of, 94–95
stringing commands together using, 91–94
too long, causing errors, 372
treating data as strings, causing errors,

368–369
in Windows Shell, 12–13

plus sign (+)
adding numbers, 140–142
combining strings, 120–121
in regular expressions, 132–133

plus sign, double (++), incrementing
numbers, 141

plus sign, equal (+=), adding and assigning
numbers, 140

policy, application fi rewall, 299–300
policy, execution

changing, 26–27, 290
default, 27
levels for, 289
problems caused by, 365–366
remote operation affected by, 221

popup() method, for WSH shell, 248–249
Position property, for parameters, 200
pound sign (#), preceding comments, 42
Power Tab, 35
PowerGadgets extension, 356
PowerShell. See Windows PowerShell 2
PowerShell drives

accessing registry with, 264–265
deleting registry keys and values with, 271
reading registry keys and values with,

267–268
renaming registry keys with, 271
writing registry keys and values with,

268–269
PowerShell ISE. See ISE (Integrated Shell

Environment)

DropBooksDropBooks

385385 Index

primitive values, 63
printers

default, setting, 342
printer queue, checking, 343–344
shared network printer, 341–342
status of, checking, 342–343

PrinterStatus property, Win32_Printer
class, 342–343

private scope, 193–195
process identifi er, determining, 73
Process() method, for advanced functions,

204, 206
profile command, 25
profi le script

defi ning advanced functions in, 205
defi ning aliases in, 33–34
defi ning functions in, 197
defi nition of, 24
determining location of, 25
execution policy for, 27
for remote operation, 221
running locally without signing, 26–27
signing using certifi cates, 26

$Profile variable, 73
prompt level, determining, 73
properties

of parameters, 203
of variables, 74–76
of WMI objects, 114–115

Provider Write permission, 103
providers, WMI, 100–101
psbase object, 285–286
$PSCulture variable, 72
.psdl fi le extension, 225
PSDrives. See PowerShell drives
PSH. See Windows PowerShell 2
$PSHome variable, 73
$psISE variable, 28
.psl fi le extension, 39, 288
$PSUICulture variable, 73
$PSVersionTable variable, 73, 74
Public Key Infrastructure, setting up, 290
$Pwd variable, 73, 74

• Q •
question mark (?)

debugger command, 241
in regular expressions, 132

quotes, double (“”), enclosing literal
strings, 119

• R •
random numbers, 145
Random object, 145
Read Security permission, 103
Read-Host Cmdlet, 38–39
read-only variables, 70–71
Receive-Job Cmdlet, 211–212
recordsets, disconnected, 312–313
redirection operator (>), 164
REG_BINARY data type, 263
REG_DWORD data type, 263
REG_EXPAND_SZ data type, 263
REG_MULTI_SZ data type, 263
REG_QWORD data type, 263
REG_SZ data type, 263
RegEx object. See regular expression
registry

accessing with PowerShell drives, 264–265
accessing with RegistryKey class, 265–266
defi nition of, 261–262
deleting keys and values in, 270–272
reading keys and values in, 267–268
Registry Editor for, 262–263, 270
renaming keys in, 270–271
writing keys and values in, 268–270

Registry Editor, 262–263, 270
registry key, 262
RegistryKey class, 265–266, 269–270,

271–272
regular expression (RegEx object)

alternative sequences in, 135
anchors in, 134–135
case sensitivity of, 129
character sets used in, 130–131
defi nition of, 127–128
escape character for, 129
matching and replacing substrings, 136
matching literal characters, 128–130
optional sequences in, 132
repeating sequences in, 132–134
special characters in, 129

relational database, 107
ReleaseDHCPLease() method, Win32_

NetworkAdapterConfiguration
class, 321

ReleaseDHCPLeaseAll() method, Win32_
NetworkAdapterConfiguration
class, 321, 324

remainder of division, 144
Remote Enable permission, 103

DropBooksDropBooks

386 Windows PowerShell 2 For Dummies

remote operation
for background jobs, 219–220
of Cmdlets, 215, 217–218
-computername parameter for, 214
persistent connection for, 218–219
policies affecting, 221
profi les used by, 221
of Windows PowerShell, 215–221

RemoteAdminSettings property,
HNetCfg.FwMgr object, 327

RemoteSigned execution policy, 27, 289
remove() method, for hash tables, 157
Remove-Item Cmdlet, 31–32, 161, 271
Remove-ItemProperty Cmdlet, 271
Remove-Job Cmdlet, 214
Remove-PSBreakpoint Cmdlet, 243
Remove-PSSession Cmdlet, 219
Remove-Variable Cmdlet, 70–71
Remove-WmiObject Cmdlet, 114
Rename-Item Cmdlet, 31, 162, 271
Rename-ItemProperty Cmdlet, 271
RenewDHCPLease() method, Win32_

NetworkAdapterConfiguration
class, 321

RenewDHCPLeaseAll() method, Win32_
NetworkAdapterConfiguration
class, 321, 324

replace() method, for strings, 76, 125
-replace switch, 136
reports

Cmdlets used for, 346
creating custom PowerShell objects for

data, 350–352
CSV fi le format, 349–350
formatting with Cascading Style Sheets,

353–355
HTML fi le format, 352–353
interactive table format, 348–349
tabular output, 347–348
third-party reporting tools for, 355–356
XML fi le format, 349–350

#REQUIRES Version 2 command, 39
reserved (automatic) variables, 71–74
resources. See books and publications; Web

site resources
RestoreDefaults() method, HNetCfg.

FwMgr object, 329–330
Restricted execution policy, 27, 289
return keyword, 191
RFC 3687, 280
RFC 4515, 280
root element, XML, 167
round() method, for numbers, 144–145

• S •
\s (regular expressions shortcut), 131
\S (regular expressions shortcut), 131
s (Step) command, in debugger, 241
sAMAccountName attribute, 274–275
scope of aliases, 30–31
scope of variables in functions, 193–197,

372–373
script scope, 193–195
Script/Editor pane, ISE, 19, 20
scripts. See also profi le script

comments in, 42
creating, 39–41
in current folder, running, 41
DATA section in, 225, 226–229
execution policy for, 27
running in ISE, 20
running remotely, 217–218
sharing, 229–230
signing, 295–297
version required for, specifying, 39

scripts, Windows Shell
converting to PowerShell, 302–306
running from PowerShell, 55–59

scripts, WSH
converting to PowerShell, 306–316
running from PowerShell, 59–60

search patterns. See regular expression
(RegEx object)

security
certifi cate from Enterprise CA, requesting,

293–294
certifi cate store, querying, 294–295
current directory not in search path, 288
execution policies, 288–290
PSH scripts not run by double-clicking, 288
self-signed certifi cate, creating, 290–292
signatures to run profi le scripts, 26
Windows Firewall, 297–300
for WMI, 103, 109–111

SELECT statement, 107
Select-Object Cmdlet, 95, 108, 109, 362–363
self-signed certifi cate, 290
ServiceName property, Win32_

NetworkAdapterConfiguration
class, 322

services
blocked by fi rewall, 299
confi guring, 256–257
determining status of, 108–109, 253–254
starting, 109, 254–256

DropBooksDropBooks

387387 Index

Services property, HNetCfg.FwMgr
object, 327

session
persistent, 218–219
remote, 216–217

Set-Alias Cmdlet, 31
SetAttribute() method, XML object, 168
Set-AuthenticationSignature Cmdlet,

295–297
Set-Content Cmdlet, 166
SetDefaultPrinter() method, Win32_

Printer class, 342
SetDNSDomain() method, Win32_

NetworkAdapterConfiguration
class, 321

SetDNSServerSearchOrder()
method, Win32_
NetworkAdapterConfiguration
class, 321, 325

SetDNSSuffixSearchOrder()
method, Win32_
NetworkAdapterConfiguration
class, 321

Set-ExecutionPolicy Cmdlet, 26, 290
SetInfo() method, DirectoryEntry

class, 283–284
Set-Item Cmdlet, 30
Set-ItemProperty Cmdlet, 269
Set-Location Cmdlet, 32, 160, 267, 360
Set-PSBreakpoint Cmdlet, 238, 240
Set-Service Cmdlet, 257
SetValue() method, RegistryKey class,

269–270
Set-Variable Cmdlet, 62, 70–71
Set-WmiInstance Cmdlet, 114–115
shared network printer, 341–342
shell identifi er, determining, 73
$ShellID variablel, 73
short data type, 63, 138
signatures for scripts. See code-signing

certifi cate
single data type, 64, 67, 139
slash, equal (/=), dividing and assigning

numbers, 144
snapin attribute, 200
Snover, Jeffrey P. (Monad architect), 12
Sort-Object Cmdlet, 95, 109
split() method, for strings, 122–123
SQL For Dummies (Taylor), 107
SQL for WMI (WQL), 106–107
square brackets ([])

enclosing array indexes, 149, 152–153
enclosing casted data types, 68–69, 121

enclosing character sets in regular
expressions, 130–131

enclosing data types, 66
enclosing optional items in syntax, 54
enclosing parameter properties, 203

star operator (*)
multiplying numbers, 143
in regular expressions, 133–134

star operator, equal (*=), multiplying and
assigning numbers, 143

Start-Job Cmdlet, 210–211
Start-Service Cmdlet, 109, 254
StartService() method, for WMI objects,

255–256
Start-Sleep Cmdlet, 256
state of last operation, determining, 72
State property, Job object, 211
static methods, WMI, 113
Step (s) command, in debugger, 241
Step-Out (o), in debugger, 241
Step-Over (v), in debugger, 241
stepping through code in debugger, 241
Stop-Job Cmdlet, 214–215
string data type, 64, 67, 121
strings

case of, changing, 127
casting variables as, 369–370
combining, 120–121
comparing, 126
defi nition of, 117–118
empty, 118
line breaks in, 119–120
literal, 65, 118–119
null, 118
position of specifi c characters, 125–126
searching for patterns in. See regular

expression (RegEx object)
special characters in, 119–120
splitting, 122–123, 305–306
substitutions of, 125
substrings of, 123–125

subtraction of numbers, 142
SupportShouldProcess attribute, 199
switch statement, 83
system errors, 233
System.DirectoryServices.

DirectorySearcher class, 276–277

• T •
tab expansion, 34–35
Taylor, Allen (SQL For Dummies), 107
TCP/IP settings, 322–325

DropBooksDropBooks

388 Windows PowerShell 2 For Dummies

Test-Path Cmdlet, 311
text fi les. See fi le system
text strings

case of, changing, 127
casting variables as, 369–370
combining, 120–121
comparing, 126
defi nition of, 117–118
empty, 118
line breaks in, 119–120
literal, 65, 118–119
null, 118
position of specifi c characters, 125–126
searching for patterns in. See regular

expression (RegEx object)
special characters in, 119–120
splitting, 122–123, 305–306
substitutions of, 125
substrings of, 123–125

Throw keyword, BC6–BC7
time and date

adding to, 180–181
creating, 178
current, determining, 175–176
DST (daylight saving time), 181–182
formatting, 176–178
subtracting, 179–180
time zones, 182–184

time zones, 182–184
TimeZone class, 183–184
-title switch, ConvertTo-HTML Cmdlet, 173
tokens received by shell, determining, 72
ToLower() method, for strings, 127
ToUpper() method, for strings, 75, 127
translation. See internationalization
Trap keyword, BC4–BC6
troubleshooting. See debugging; errors
$True variable, 73–74
Type property, HNetCfg.FwMgr object, 327
types

casting (changing), 67–70, 121, 145–146,
369–370

defi nition of, 62–63
explicitly defi ning, 65–67
implicitly defi ning, 64–65
integral, 138
list of, 63–64
nonintegral, 139
shortcuts (abbreviated names) for, 67

• U •
-uFormat switch, Get-Date Cmdlet, 176–177
$UICulture variable, 225
unexpected input, 232
Unrestricted execution policy, 289
USB drives, detecting, 339
user profi le path, determining, 73
userAccountControl attribute, 280–282
UTC (Coordinated Universal Time), 182

• V •
v (Step-Over) command, in debugger, 241
ValidateCount, 202
ValidateLength, 202
ValidateNotNull, 203
ValidateNotNullOrEmpty, 203
ValidatePattern, 202
ValidateRange, 203
ValidateScript, 203
ValidateSet, 203
ValueFromPipeline, 201, 205
ValueFromPipelineByProperty Name, 201
ValueFromRemainingArguments, 201
variables

automatic variables, 71–74
constants, 70–71
data types for. See data types
defi ning, 62, 66
defi nition of, 61–62
environment variables, 192
naming conventions for, 62
properties and methods of, using, 74–76
read-only variables, 70–71
scope of, in functions, 193–197, 372–373

.vbs fi le extension, 59
version required, specifying in scripts, 39
vertical bar (|), pipe character

in LDAP fi lters, 279–280
for piping, 51
in regular expressions, 135

von Orouw, Marc (developed Power Tab), 35

• W •
\w (regular expressions shortcut), 131
\W (regular expressions shortcut), 131
Wait-Job Cmdlet, 213

DropBooksDropBooks

389389 Index

WBEM (Web-Based Enterprise
Management), 100

Web site resources
Monad Manifesto, 13
MSDN (Microsoft Developer Network), 106
Power Tab, 35
Public Key Infrastructure setup, 290
RFC 3687, 280
RFC 4515, 280
for this book, 2, 7
Windows Firewall tools and settings, 327

Web-Based Enterprise Management
(WBEM), 100

Where-Object Cmdlet, 94–95, 109, 364
while loop, 86
-width switch, Out-File Cmdlet, 165
wildcards in LDAP fi lters, 278
Win32_Battery class, 338
Win32_BIOS class, 104, 105, 107
Win32_ComputerSystem class, 104, 105
Win32_Directory class, 105
Win32_DiskDrive class, 335, 339, 340
Win32_Environment class, 105, 114–115
Win32_LogicalDisk class, 105
Win32_NetworkAdapter class, 105
Win32_NetworkAdapterConfiguration

class, 105, 320–322
Win32_NTLogEvent class, 105, 109, 258–259
Win32_OperatingSystem class, 105
Win32_PCMCIAController class, 338–339
Win32_PerfFormattedData_Spooler_

PrintQueue class, 343–344
Win32_Printer class, 105, 341–343
Win32_PrintJob class, 105
Win32_Process class, 105
Win32_Processor class, 105
Win32_QuickFixEngineering class, 105
Win32_Registry class, 106
Win32_ScheduledJob class, 106
Win32_Service class, 106, 108–109, 255–256
Win32_Share class, 106
Win32_SystemEnclosure class, 336–338
Win32_TimeZone class, 106
Win32_Volume class, 251–252
window size for command shell, changing,

22–23
window title for command shell, changing, 24
Windows, versions of, 2
Windows Firewall

application policies, creating, 299–300
authorized applications, listing, 328–329

authorized services, listing, 299
defi nition of, 325–326
disabling, 328
enabling, 297, 327
enabling inbound ICMP echo requests,

297–298, 328
globally open ports, defi ning, 298
globally open ports, listing, 329
HNetCfg.FwMgr object for, 326–327
managing remotely, 298, 328
resetting to default settings, 329–330
status of, determining, 297

Windows Management Instrumentation.
See WMI

Windows PowerShell 1.0
slow adoption of, 13–14
uninstalling, 16

Windows PowerShell 2. See also command
shell for PSH; ISE (Integrated Shell
Environment); specifi c topics

alternatives to, 12
features in, 14–15
history of, 12–14
installation path, determining, 73
installing, 15–16
release covered by this book, 2
remote operation of, 215–221
specifying version required in scripts, 39
starting command shell for, 16–17
starting ISE, 18, 27
version of, determining, 73
versions covered by this book, 7

Windows PowerShell 2 scripts. See scripts
Windows PowerShell Integrated Shell

Environment. See ISE
Windows registry

accessing with PowerShell drives, 264–265
accessing with RegistryKey class, 265–266
defi nition of, 261–262
deleting keys and values in, 270–272
reading keys and values in, 267–268
Registry Editor for, 262–263, 270
renaming keys in, 270–271
writing keys and values in, 268–270

Windows Remote Shell (WinRM), 210, 216
Windows Scripting Host (WSH)

ADO uses, converting to PSH, 312–316
COM objects, using in PSH, 307–310
converting scripts to PowerShell, 306–316
CreateObject() method, converting to

PSH, 309–310

DropBooksDropBooks

390 Windows PowerShell 2 For Dummies

Windows Scripting Host (WSH) (continued)

function location, converting to PSH, 307
GetObject() method, converting

to PSH, 310
I/O, converting to PSH, 311–312
running scripts from PowerShell, 59–60

Windows services, managing, 253–257
Windows Shell scripts

converting to PowerShell, 302–306
running from PowerShell, 55–59

WindowSize property, $Host.UI.RawUI
object, 23

WindowTitle property, $Host.UI.RawUI
object, 24

WinRM (Windows Remote Shell), 210, 216
WMI (Windows Management

Instrumentation)
architecture of, 100–101
authentication levels, 109–111
classes, accessing, 103–105, 362
classes, invoking methods of, 113
classes, list of, 105–106
classes, querying, 106–107
classes, setting properties of, 114–115
defi nition of, 100
event logs, searching, 109

hardware, monitoring, 332–340
impersonation levels, 111–112
namespaces, 101–102
objects, deleting, 114
permissions, 103
services, determining status of, 108–109
services, starting, 109

wmi data type, 67
WMI MMC snap-in, 102–103
WMI providers, 100–101
WQL (WMI Query Language), 106–107
Write-Host Cmdlet, 38, 302
Write-Output Cmdlet, 38–39
WSCRIPT command, 60
WSH. See Windows Scripting Host (WSH)

• X •
xml data type, 67
XML fi les

defi nition of, 166–167
exporting to, 349–350
reading, 168
saving objects to, 169–171
writing, 168–169

XOR (Exclusive OR) operator, 78

DropBooksDropBooks

Steve Seguis

Learn to:
• Master Windows PowerShell 2 without

complicated jargon

• Automate Windows Server®
administration tasks

• Use the new features of Windows
PowerShell 2

• Debug scripts, remotely invoke
commands, and more

Windows
PowerShell

™

 2

Making Everything Easier!

Visit the companion Web site at www.dummies.com/go/

powershell2fd to find code files for the code listings used in

the book and a bonus chapter about exception handling

 Open the book and find:

• Tips for personalizing PowerShell

• All about cmdlets

• How to use Windows Management
Instrumentation (WMI)

• Things to watch for in value
conversions

• How to internationalize a script

• Debugging tools and how to use
them

• Network configuration tips

• Ten common mistakes to avoid

• How to take advantage of this new
feature in Windows 7

Steve Seguis is a Microsoft Windows systems engineer with more than

12 years of experience managing small- to large-scale Windows

environments. He was a Microsoft MVP for Windows Server - Admin

Frameworks from 2004–2007, and is a contributing technical editor for

Windows IT Pro.

Programming Languages/General

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-37198-5

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Get the power to use
Windows PowerShell 2 on
any Windows system — right here!
You’ve heard about Windows PowerShell 2, the Windows
scripting environment that’s changing how we think
about Windows scripting. This fun and friendly guide gives
you a solid understanding of what it is and how to use
it, with plenty of real-world examples so you can put the
information to good use right away. Your boss will think
you’re a genius!

• View from the top — get an overview of Windows PowerShell 2
and examine the syntax, structure, and core functionality

• Look deeper — manipulate strings, work with data structures
like arrays and hashtables, and use Windows Management
Instrumentation

• The need for speed — see how Windows PowerShell speeds
things up by letting you run commands on a remote computer or
run multiple commands at once

• In the real world — learn to apply scripts to specific needs

• It does more — use Windows PowerShell 2 to manage network
configurations, gather hardware info, connect to printers, and
more

W
indow

s Pow
erShell

™ 2

Seguis

spine=.816”

DropBooksDropBooks

www.dummies.com/go/powershell2fd
www.dummies.com/go/powershell2fd

	Windows Power Shell 2 For Dummies®
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	What You’re Not to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	What’s on the Web Site
	Where to Go from Here

	Part I: Getting a Bird's Eye View of PowerShell 2
	Chapter 1: The Windows PowerShell Rap Sheet
	Addressing the Need for a Powerful, Windows-Focused Scripting Language
	Windows PowerShell 2, the Next Evolution
	Installing Windows PowerShell 2
	Firing up the Windows PowerShell Command Shell
	Going GUI: The Windows PowerShell Integrated Shell Environment (ISE)

	Chapter 2: Customizing and Shortcutting the Environment
	Personalizing the Look and Feel of the Command Shell
	Changing Your PowerShell Profile
	Making the Windows PowerShell ISE Work for You
	Creating Aliases
	Deleting Aliases
	Accessing the Alias Drive
	Creating Persistent Aliases
	Getting to Know Tab Expansion

	Chapter 3: A Pinch of Shell, a Pound of Power
	Getting a Taste of Windows PowerShell
	Creating Your First Script
	Breaking Down Your First Script
	Sneaking a Peek at Complex Scripts
	Examining the Nuts and Bolts of the Complist Script

	Part II: PowerShell's Basic Structure and Syntax
	Chapter 4: Shelling Out Commands and Scripts
	Cmdlets: The Little Commands That Could!
	One Shell to Rule Them All

	Chapter 5: When Dollars Turn into Variables
	Discovering Variables: They Vary Very Much
	Getting to Know Data Types
	Constant and Read-Only Variables
	Understanding Automatic Variables
	Working with Objects through Variables

	Chapter 6: A Bit of Logic to Save the Day
	A Logic Primer
	Branching Using If/Else
	Using the Switch Statement
	Doing It Over and Over and Over Again with Loops

	Chapter 7: Working on a Pipeline
	Using Pipelines to Streamline Your Commands
	Stringing Commands Together
	Getting the Right Output

	Part III: Complex Data Description and Sharing
	Chapter 8; Working with Windows Management Instrumentation
	Getting Familiar with Windows Management Instrumentation
	Making Windows PowerShell Interact with WMI
	Using SQL Syntax in WMI to Get WQL
	Harnessing the Power of WMI
	Changing WMI Authentication Levels
	Pretending to Be Someone Else Using Impersonation
	Using the New WMI Cmdlets

	Chapter 9: Bringing Strings into the Limelight
	Taking Your First Look at Strings
	Performing String Surgery
	Working with String Positions
	Changing the Case of Strings
	Using Regular Expressions

	Chapter 10: I’ll Take Numbers for $100, Please
	Putting Numeric Data Types under a Microscope
	Doing Some Calculations
	Rounding Off Values
	Creating Random Numbers
	Converting Numbers
	Watching Out for Overflow

	Chapter 11: Grouping Data Using Arrays and Hash Tables
	Taking an In-Depth Look at Arrays
	Creating and Using Arrays
	Growing Arrays Dynamically
	Creating Multidimensional Arrays
	Finding Other Uses for Arrays
	Working with Hash Tables: The Array’s Useful Cousin

	Chapter 12: Readin’ and Writin’ Files
	Having Some Fun with the File System
	Reading Text Files
	Writing Files
	Working with XML
	Working with HTML

	Chapter 13: Going On a Date with PowerShell
	Going On Your First Date
	179 Using Date Math (It’s Not Just for Nerds)
	Dealing with Time Zones

	Part IV: Controlling Where and How You Operate PowerShell
	Chapter 14: Using Functions to Divide and Conquer
	Reusing Code Using Functions
	Using Scope
	Creating Your Own Cmdlets — Advanced Functions!

	Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background
	Using Background Jobs
	Running Commands Remotely

	Chapter 16: Making Your Script Speak Different Languages
	Seeing the Importance of Internationalizing Scripts
	Giving Your Scripts Different Tongues
	Sharing Scripts with Others

	Chapter 17: Smashing Those Bugs
	Finding Out Where the Bugs Come From
	Understanding the Debugging Process
	Working On Your Defense
	Working with Debugging Tools

	Part V: Real-World Windows Administration Using PowerShell
	Chapter 18: Mission Control: All Systems Go
	Monitoring Drive Space
	Converting to Windows Management Infrastructure from System.IO.DriveInfo
	Managing Windows Services
	Checking Your Event Logs
	Querying EventLogs Using WMI

	Chapter 19: Taming the Windows Registry
	Following the Registry Tree
	Connecting to the Windows Registry
	Reading Keys and Values
	Writing Keys and Values
	Renaming and Deleting Registry Keys and Values

	Chapter 20: Reaching Out to Active Directory
	A Really Brief Active Directory Primer
	Connecting to Active Directory
	Querying for Objects and Attributes
	Modifying Object Attributes
	Updating Group Membership
	Getting to the Raw ADSI Object Using psbase

	Chapter 21: PowerShell Lockdown
	PowerShell Security Features
	Generating a Code-Signing Certificate
	Browsing the Certificate Store
	Signing Your Scripts
	Managing the Windows Firewall

	Chapter 22: Converting Your Old Scripts: Out with the Old, In with the New
	Converting a Windows Shell Script to Windows PowerShell
	Converting a Windows Scripting Host Script to Windows PowerShell

	Part VI: Configuring and Reporting Via PowerShell
	Chapter 23: Controlling Your Network Configuration
	Managing Your Network Settings
	Managing Your Windows Firewall

	Chapter 24: Managing Your Hardware
	Polling Your Hardware
	Controlling Your Printers

	Chapter 25: Making Reporting Easy
	Using Built-In Reporting Cmdlets
	Generating Reports
	Making Reports Pretty
	Formatting Using Cascading Style Sheets
	Using Third-Party Reporting Tools

	Part VII: The Part of Tens
	Chapter 26: The Ten Most Important Cmdlets
	Getting Help with Get-Help
	Getting to Know Your Objects with Get-Member
	Navigating with Set-Location
	Reading Text Files with Get-Content
	Writing to a File with Out-File
	Leveraging WMI with Get-WMIObject
	Creating New Objects with New-Object
	Getting Picky with Select-Object
	Going Through Collections with Foreach-Object
	Controlling the Pipeline with Where-Object

	Chapter 27: Ten Common PowerShell Mistakes
	Forgetting to Change the Execution Policy
	Using Commas to Separate Parameters When Calling a Function
	Defining Functions After You Use Them
	Treating Pipeline Data as Strings
	Forgetting to Cast Variables as a String
	Using Incorrect Comparison Operators
	Trying to Do Too Much in One Pipeline
	Forgetting About Variable Scope
	Not Using the Debugger
	Not Using .NET Classes When Available

	Index

